<!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. -->
hbenitez/food_classifier
This model is a fine-tuned version of google/vit-base-patch16-224-in21k on an unknown dataset. It achieves the following results on the evaluation set:
- Train Loss: 2.3735
- Validation Loss: 2.5622
- Train Accuracy: 0.0769
- Epoch: 4
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'module': 'keras.optimizers.schedules', 'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 3e-05, 'decay_steps': 260, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, 'registered_name': None}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01}
- training_precision: float32
Training results
Train Loss | Validation Loss | Train Accuracy | Epoch |
---|---|---|---|
2.5417 | 2.5922 | 0.0 | 0 |
2.5103 | 2.5856 | 0.0 | 1 |
2.4593 | 2.5738 | 0.0 | 2 |
2.4104 | 2.5671 | 0.0 | 3 |
2.3735 | 2.5622 | 0.0769 | 4 |
Framework versions
- Transformers 4.30.2
- TensorFlow 2.13.0-rc2
- Datasets 2.13.1
- Tokenizers 0.13.3