<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. -->
vit-large-artifacts
This model is a fine-tuned version of kakaobrain/vit-large-patch16-512 on the KyriaAnnwyn/artifacts_ds dataset. It achieves the following results on the evaluation set:
- Loss: 0.5995
- Accuracy: 0.6705
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 4
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 2
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
0.7001 | 0.01 | 100 | 0.6414 | 0.6559 |
0.6288 | 0.01 | 200 | 0.6666 | 0.6559 |
0.7237 | 0.02 | 300 | 0.7087 | 0.6559 |
0.8741 | 0.03 | 400 | 0.6739 | 0.6257 |
0.6093 | 0.04 | 500 | 0.6462 | 0.6559 |
0.5801 | 0.04 | 600 | 0.6822 | 0.6559 |
0.594 | 0.05 | 700 | 1.9948 | 0.6395 |
0.7724 | 0.06 | 800 | 0.6566 | 0.6553 |
0.6976 | 0.07 | 900 | 0.6774 | 0.6325 |
0.6583 | 0.07 | 1000 | 0.7175 | 0.3517 |
0.6779 | 0.08 | 1100 | 0.7012 | 0.6559 |
0.6478 | 0.09 | 1200 | 0.6336 | 0.6559 |
0.7405 | 0.1 | 1300 | 0.6577 | 0.6559 |
0.7362 | 0.1 | 1400 | 0.6630 | 0.6142 |
0.535 | 0.11 | 1500 | 0.7445 | 0.6559 |
0.7338 | 0.12 | 1600 | 0.7046 | 0.4718 |
0.6519 | 0.13 | 1700 | 0.6601 | 0.6426 |
0.5969 | 0.13 | 1800 | 0.6518 | 0.6559 |
0.5992 | 0.14 | 1900 | 0.6544 | 0.6559 |
0.5762 | 0.15 | 2000 | 0.6608 | 0.6559 |
0.6483 | 0.16 | 2100 | 0.6436 | 0.6331 |
0.7594 | 0.16 | 2200 | 0.7562 | 0.5213 |
0.6423 | 0.17 | 2300 | 0.6326 | 0.6433 |
0.7006 | 0.18 | 2400 | 0.6669 | 0.6108 |
0.833 | 0.19 | 2500 | 0.7043 | 0.6559 |
0.6133 | 0.19 | 2600 | 0.6356 | 0.6532 |
0.5285 | 0.2 | 2700 | 0.6619 | 0.6606 |
0.7209 | 0.21 | 2800 | 0.7306 | 0.4196 |
0.682 | 0.22 | 2900 | 0.6400 | 0.6539 |
0.7148 | 0.22 | 3000 | 0.6421 | 0.6559 |
0.6288 | 0.23 | 3100 | 0.7416 | 0.6559 |
0.666 | 0.24 | 3200 | 0.6368 | 0.6293 |
0.772 | 0.25 | 3300 | 0.6973 | 0.4985 |
0.6778 | 0.25 | 3400 | 0.6288 | 0.6604 |
0.5939 | 0.26 | 3500 | 0.6566 | 0.6559 |
0.6246 | 0.27 | 3600 | 0.6347 | 0.6618 |
0.649 | 0.28 | 3700 | 0.6353 | 0.6277 |
0.7122 | 0.28 | 3800 | 0.6407 | 0.6559 |
0.6292 | 0.29 | 3900 | 0.6776 | 0.6560 |
0.6079 | 0.3 | 4000 | 0.6220 | 0.6609 |
0.6971 | 0.31 | 4100 | 0.6258 | 0.6394 |
0.7131 | 0.31 | 4200 | 0.7202 | 0.6556 |
0.5346 | 0.32 | 4300 | 0.6394 | 0.6571 |
0.5801 | 0.33 | 4400 | 0.6960 | 0.6664 |
0.6806 | 0.34 | 4500 | 0.6339 | 0.6348 |
0.6245 | 0.34 | 4600 | 0.6226 | 0.6477 |
0.6905 | 0.35 | 4700 | 0.6203 | 0.6533 |
0.741 | 0.36 | 4800 | 0.6464 | 0.6680 |
0.5712 | 0.37 | 4900 | 0.6162 | 0.6640 |
0.5566 | 0.37 | 5000 | 0.6182 | 0.6507 |
0.6443 | 0.38 | 5100 | 0.6457 | 0.6664 |
0.6107 | 0.39 | 5200 | 0.6092 | 0.6617 |
0.5824 | 0.4 | 5300 | 0.6383 | 0.6571 |
0.4775 | 0.4 | 5400 | 0.6606 | 0.6621 |
0.7114 | 0.41 | 5500 | 0.6179 | 0.6619 |
0.7701 | 0.42 | 5600 | 0.7982 | 0.4217 |
0.6974 | 0.42 | 5700 | 0.6223 | 0.6540 |
0.6669 | 0.43 | 5800 | 0.6249 | 0.6559 |
0.6982 | 0.44 | 5900 | 0.6287 | 0.6564 |
0.5811 | 0.45 | 6000 | 0.6104 | 0.6506 |
0.4347 | 0.45 | 6100 | 1.0475 | 0.6559 |
0.5885 | 0.46 | 6200 | 0.6125 | 0.6552 |
0.6867 | 0.47 | 6300 | 0.6435 | 0.6468 |
0.6088 | 0.48 | 6400 | 0.6047 | 0.6623 |
0.8194 | 0.48 | 6500 | 0.6972 | 0.6589 |
0.8182 | 0.49 | 6600 | 0.6053 | 0.6644 |
0.6104 | 0.5 | 6700 | 0.7375 | 0.6571 |
0.5552 | 0.51 | 6800 | 0.6231 | 0.6402 |
0.6451 | 0.51 | 6900 | 0.6452 | 0.6561 |
0.7849 | 0.52 | 7000 | 0.6177 | 0.6612 |
0.64 | 0.53 | 7100 | 0.6307 | 0.6234 |
0.6393 | 0.54 | 7200 | 0.6130 | 0.6554 |
0.8326 | 0.54 | 7300 | 0.7210 | 0.6421 |
0.6579 | 0.55 | 7400 | 0.6227 | 0.6544 |
0.5195 | 0.56 | 7500 | 0.6619 | 0.6557 |
0.6197 | 0.57 | 7600 | 0.6354 | 0.6498 |
0.8507 | 0.57 | 7700 | 0.6820 | 0.6550 |
0.7163 | 0.58 | 7800 | 0.6720 | 0.5328 |
0.6896 | 0.59 | 7900 | 0.6530 | 0.6386 |
0.62 | 0.6 | 8000 | 0.6296 | 0.6559 |
0.8254 | 0.6 | 8100 | 0.6752 | 0.6200 |
0.7653 | 0.61 | 8200 | 0.7118 | 0.6558 |
0.7742 | 0.62 | 8300 | 0.6262 | 0.6497 |
0.6861 | 0.63 | 8400 | 0.6799 | 0.5566 |
0.5652 | 0.63 | 8500 | 0.6708 | 0.6559 |
0.7486 | 0.64 | 8600 | 0.6319 | 0.6559 |
0.6204 | 0.65 | 8700 | 0.6407 | 0.6530 |
0.673 | 0.66 | 8800 | 0.7154 | 0.4672 |
0.7272 | 0.66 | 8900 | 0.6323 | 0.6528 |
0.7364 | 0.67 | 9000 | 0.6436 | 0.6188 |
0.71 | 0.68 | 9100 | 0.6507 | 0.5924 |
0.6767 | 0.69 | 9200 | 0.6347 | 0.6575 |
0.7046 | 0.69 | 9300 | 0.6723 | 0.6127 |
0.7486 | 0.7 | 9400 | 0.6328 | 0.6485 |
0.7646 | 0.71 | 9500 | 0.6244 | 0.6550 |
0.5971 | 0.72 | 9600 | 0.6610 | 0.6558 |
0.6195 | 0.72 | 9700 | 0.6219 | 0.6515 |
0.6891 | 0.73 | 9800 | 0.6300 | 0.6619 |
0.6829 | 0.74 | 9900 | 0.6312 | 0.6568 |
0.4786 | 0.75 | 10000 | 0.7160 | 0.6573 |
0.6093 | 0.75 | 10100 | 0.6245 | 0.6503 |
0.672 | 0.76 | 10200 | 0.6248 | 0.6577 |
0.6734 | 0.77 | 10300 | 0.6541 | 0.6600 |
0.7826 | 0.78 | 10400 | 0.6413 | 0.6559 |
0.6851 | 0.78 | 10500 | 0.6478 | 0.6006 |
0.6776 | 0.79 | 10600 | 0.6453 | 0.6175 |
0.7322 | 0.8 | 10700 | 0.6188 | 0.6353 |
0.5144 | 0.81 | 10800 | 0.6762 | 0.6571 |
0.6977 | 0.81 | 10900 | 0.6559 | 0.6544 |
0.5681 | 0.82 | 11000 | 0.7225 | 0.6559 |
0.6449 | 0.83 | 11100 | 0.6372 | 0.6576 |
0.6067 | 0.83 | 11200 | 0.6207 | 0.6391 |
0.5921 | 0.84 | 11300 | 0.6178 | 0.6538 |
0.5373 | 0.85 | 11400 | 0.7370 | 0.6559 |
0.6926 | 0.86 | 11500 | 0.6346 | 0.6372 |
0.6634 | 0.86 | 11600 | 0.6274 | 0.6489 |
0.61 | 0.87 | 11700 | 0.6309 | 0.6427 |
0.6214 | 0.88 | 11800 | 0.6273 | 0.6480 |
0.6202 | 0.89 | 11900 | 0.6255 | 0.6559 |
0.6153 | 0.89 | 12000 | 0.6348 | 0.6459 |
0.7062 | 0.9 | 12100 | 0.6283 | 0.6512 |
0.6977 | 0.91 | 12200 | 0.6159 | 0.6515 |
0.6041 | 0.92 | 12300 | 0.6251 | 0.6504 |
0.6609 | 0.92 | 12400 | 0.6633 | 0.5870 |
0.7565 | 0.93 | 12500 | 0.6200 | 0.6562 |
0.6133 | 0.94 | 12600 | 0.6193 | 0.6527 |
0.7066 | 0.95 | 12700 | 0.6279 | 0.6180 |
0.5706 | 0.95 | 12800 | 0.6128 | 0.6575 |
0.6992 | 0.96 | 12900 | 0.6334 | 0.6449 |
0.6834 | 0.97 | 13000 | 0.6258 | 0.6591 |
0.6069 | 0.98 | 13100 | 0.6290 | 0.6620 |
0.743 | 0.98 | 13200 | 0.6110 | 0.6562 |
0.5226 | 0.99 | 13300 | 0.6165 | 0.6557 |
0.7359 | 1.0 | 13400 | 0.6207 | 0.6376 |
0.5812 | 1.01 | 13500 | 0.6192 | 0.6559 |
0.666 | 1.01 | 13600 | 0.6347 | 0.6602 |
0.5489 | 1.02 | 13700 | 0.6107 | 0.6459 |
0.701 | 1.03 | 13800 | 0.6172 | 0.6518 |
0.4873 | 1.04 | 13900 | 0.6786 | 0.6559 |
0.5807 | 1.04 | 14000 | 0.6636 | 0.6433 |
0.6824 | 1.05 | 14100 | 0.6176 | 0.6315 |
0.6012 | 1.06 | 14200 | 0.6097 | 0.6617 |
0.4865 | 1.07 | 14300 | 0.6103 | 0.6623 |
0.5612 | 1.07 | 14400 | 0.6947 | 0.6559 |
0.5968 | 1.08 | 14500 | 0.6559 | 0.5981 |
0.5657 | 1.09 | 14600 | 0.6076 | 0.6509 |
0.4778 | 1.1 | 14700 | 0.6808 | 0.6535 |
0.6047 | 1.1 | 14800 | 0.6131 | 0.6480 |
0.5999 | 1.11 | 14900 | 0.6120 | 0.6559 |
0.5852 | 1.12 | 15000 | 0.6356 | 0.6553 |
0.7033 | 1.13 | 15100 | 0.6578 | 0.6647 |
0.5925 | 1.13 | 15200 | 0.6153 | 0.6633 |
0.5959 | 1.14 | 15300 | 0.6306 | 0.6211 |
0.5929 | 1.15 | 15400 | 0.6246 | 0.6655 |
0.5621 | 1.16 | 15500 | 0.6126 | 0.6424 |
0.5508 | 1.16 | 15600 | 0.6844 | 0.6559 |
0.6276 | 1.17 | 15700 | 0.6066 | 0.6531 |
1.0359 | 1.18 | 15800 | 0.6271 | 0.6617 |
0.6191 | 1.19 | 15900 | 0.6166 | 0.6480 |
0.7095 | 1.19 | 16000 | 0.6228 | 0.6462 |
0.6567 | 1.2 | 16100 | 0.6066 | 0.6653 |
0.5653 | 1.21 | 16200 | 0.6022 | 0.6605 |
0.6894 | 1.21 | 16300 | 0.6216 | 0.6568 |
0.608 | 1.22 | 16400 | 0.6041 | 0.6559 |
0.665 | 1.23 | 16500 | 0.6111 | 0.6564 |
0.6753 | 1.24 | 16600 | 0.6138 | 0.6581 |
0.6213 | 1.24 | 16700 | 0.6121 | 0.6380 |
0.6983 | 1.25 | 16800 | 0.6166 | 0.6661 |
0.8521 | 1.26 | 16900 | 0.6202 | 0.6461 |
0.4927 | 1.27 | 17000 | 0.6313 | 0.6547 |
0.6414 | 1.27 | 17100 | 0.6011 | 0.6667 |
0.539 | 1.28 | 17200 | 0.6451 | 0.6664 |
0.5118 | 1.29 | 17300 | 0.6243 | 0.6641 |
0.7512 | 1.3 | 17400 | 0.6257 | 0.6586 |
0.5943 | 1.3 | 17500 | 0.6186 | 0.6423 |
0.5861 | 1.31 | 17600 | 0.6435 | 0.6638 |
0.7065 | 1.32 | 17700 | 0.6197 | 0.6279 |
0.5973 | 1.33 | 17800 | 0.6081 | 0.6535 |
0.5997 | 1.33 | 17900 | 0.6053 | 0.6608 |
0.7091 | 1.34 | 18000 | 0.6013 | 0.6644 |
0.691 | 1.35 | 18100 | 0.6103 | 0.6654 |
0.5559 | 1.36 | 18200 | 0.6110 | 0.6658 |
0.6309 | 1.36 | 18300 | 0.6067 | 0.6664 |
0.6262 | 1.37 | 18400 | 0.6027 | 0.6616 |
0.5551 | 1.38 | 18500 | 0.6106 | 0.6671 |
0.6703 | 1.39 | 18600 | 0.6043 | 0.6576 |
0.6849 | 1.39 | 18700 | 0.6018 | 0.6616 |
0.6136 | 1.4 | 18800 | 0.6324 | 0.6629 |
0.7075 | 1.41 | 18900 | 0.6057 | 0.6561 |
0.6036 | 1.42 | 19000 | 0.6081 | 0.6559 |
0.6549 | 1.42 | 19100 | 0.6352 | 0.6655 |
0.5168 | 1.43 | 19200 | 0.6042 | 0.6632 |
0.5864 | 1.44 | 19300 | 0.6111 | 0.6639 |
0.5961 | 1.45 | 19400 | 0.6003 | 0.6644 |
0.6077 | 1.45 | 19500 | 0.6125 | 0.6566 |
0.6215 | 1.46 | 19600 | 0.6128 | 0.6582 |
0.4005 | 1.47 | 19700 | 0.6348 | 0.6642 |
0.5689 | 1.48 | 19800 | 0.6355 | 0.6647 |
0.6026 | 1.48 | 19900 | 0.6127 | 0.6444 |
0.4982 | 1.49 | 20000 | 0.6034 | 0.6654 |
0.6189 | 1.5 | 20100 | 0.6202 | 0.6609 |
0.5502 | 1.51 | 20200 | 0.6044 | 0.6621 |
0.5924 | 1.51 | 20300 | 0.6107 | 0.6445 |
0.744 | 1.52 | 20400 | 0.6164 | 0.6559 |
0.5582 | 1.53 | 20500 | 0.6166 | 0.6559 |
0.6994 | 1.54 | 20600 | 0.6109 | 0.6664 |
0.5396 | 1.54 | 20700 | 0.6189 | 0.6670 |
0.7232 | 1.55 | 20800 | 0.6104 | 0.6610 |
0.9802 | 1.56 | 20900 | 0.6232 | 0.6642 |
0.6487 | 1.57 | 21000 | 0.6056 | 0.6505 |
0.5932 | 1.57 | 21100 | 0.5980 | 0.6702 |
0.7897 | 1.58 | 21200 | 0.6012 | 0.6638 |
0.6006 | 1.59 | 21300 | 0.6232 | 0.6672 |
0.4481 | 1.6 | 21400 | 0.6124 | 0.6676 |
0.6078 | 1.6 | 21500 | 0.6495 | 0.6664 |
0.595 | 1.61 | 21600 | 0.7122 | 0.6675 |
0.6388 | 1.62 | 21700 | 0.6227 | 0.6671 |
0.5731 | 1.62 | 21800 | 0.6252 | 0.6682 |
0.8603 | 1.63 | 21900 | 0.6026 | 0.6653 |
0.6316 | 1.64 | 22000 | 0.6494 | 0.6669 |
0.6712 | 1.65 | 22100 | 0.6097 | 0.6676 |
0.6102 | 1.65 | 22200 | 0.6221 | 0.6585 |
0.7099 | 1.66 | 22300 | 0.6006 | 0.6658 |
0.621 | 1.67 | 22400 | 0.6026 | 0.6626 |
0.478 | 1.68 | 22500 | 0.6062 | 0.6624 |
0.6106 | 1.68 | 22600 | 0.5990 | 0.6669 |
0.5793 | 1.69 | 22700 | 0.5980 | 0.6681 |
0.5804 | 1.7 | 22800 | 0.6014 | 0.6626 |
0.6304 | 1.71 | 22900 | 0.6107 | 0.6380 |
0.7427 | 1.71 | 23000 | 0.6051 | 0.6682 |
0.5794 | 1.72 | 23100 | 0.6105 | 0.6611 |
0.5084 | 1.73 | 23200 | 0.6643 | 0.6673 |
0.6518 | 1.74 | 23300 | 0.6366 | 0.6687 |
0.5129 | 1.74 | 23400 | 0.6053 | 0.6682 |
0.7593 | 1.75 | 23500 | 0.5977 | 0.6662 |
0.6645 | 1.76 | 23600 | 0.5988 | 0.6683 |
0.6144 | 1.77 | 23700 | 0.6130 | 0.6673 |
0.6855 | 1.77 | 23800 | 0.6192 | 0.6596 |
0.559 | 1.78 | 23900 | 0.6208 | 0.6574 |
0.4202 | 1.79 | 24000 | 0.6125 | 0.6690 |
0.6604 | 1.8 | 24100 | 0.6052 | 0.6685 |
0.5487 | 1.8 | 24200 | 0.6086 | 0.6685 |
0.6816 | 1.81 | 24300 | 0.5997 | 0.6620 |
0.6057 | 1.82 | 24400 | 0.6128 | 0.6530 |
0.4335 | 1.83 | 24500 | 0.6121 | 0.6676 |
0.6147 | 1.83 | 24600 | 0.6225 | 0.6670 |
0.7414 | 1.84 | 24700 | 0.6248 | 0.6718 |
0.622 | 1.85 | 24800 | 0.6084 | 0.6722 |
0.5356 | 1.86 | 24900 | 0.6003 | 0.6611 |
0.7994 | 1.86 | 25000 | 0.6098 | 0.6657 |
0.5389 | 1.87 | 25100 | 0.6052 | 0.6633 |
0.6985 | 1.88 | 25200 | 0.6073 | 0.6694 |
0.652 | 1.89 | 25300 | 0.6040 | 0.6709 |
0.5409 | 1.89 | 25400 | 0.6065 | 0.6709 |
0.6356 | 1.9 | 25500 | 0.6062 | 0.6699 |
0.7588 | 1.91 | 25600 | 0.6025 | 0.6711 |
0.5109 | 1.92 | 25700 | 0.5992 | 0.6693 |
0.6766 | 1.92 | 25800 | 0.6004 | 0.6693 |
0.6517 | 1.93 | 25900 | 0.6020 | 0.6701 |
0.6561 | 1.94 | 26000 | 0.5995 | 0.6705 |
0.6224 | 1.95 | 26100 | 0.6008 | 0.6717 |
0.6054 | 1.95 | 26200 | 0.6005 | 0.6714 |
0.5152 | 1.96 | 26300 | 0.6023 | 0.6709 |
0.5503 | 1.97 | 26400 | 0.6032 | 0.6706 |
0.5101 | 1.98 | 26500 | 0.6067 | 0.6709 |
0.5229 | 1.98 | 26600 | 0.6079 | 0.6702 |
0.8387 | 1.99 | 26700 | 0.6079 | 0.6700 |
0.608 | 2.0 | 26800 | 0.6069 | 0.6699 |
Framework versions
- Transformers 4.30.2
- Pytorch 1.13.1+cu116
- Datasets 2.13.1
- Tokenizers 0.13.3