chemistry SMILES yield

Model Card for ReactionT5-yield-prediction

This is a ReactionT5 pre-trained to predict yields of reactions. You can use the demo here.

Model Details

<!-- Provide a longer summary of what this model is. -->

Model Sources

<!-- Provide the basic links for the model. -->

Uses

<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->

How to Get Started with the Model

Download files and use the code below to get started with the model.

import torch
import torch.nn as nn
from transformers import AutoTokenizer, T5ForConditionalGeneration, AutoConfig, PreTrainedModel

class ReactionT5Yield(PreTrainedModel):
    
    def __init__(self, config):
        super().__init__(config)
        self.config = config
        self.model = T5ForConditionalGeneration.from_pretrained(self.config._name_or_path)
        self.model.resize_token_embeddings(self.config.vocab_size)
        self.fc1 = nn.Linear(self.config.hidden_size, self.config.hidden_size//2)        
        self.fc2 = nn.Linear(self.config.hidden_size, self.config.hidden_size//2)
        self.fc3 = nn.Linear(self.config.hidden_size//2*2, self.config.hidden_size)
        self.fc4 = nn.Linear(self.config.hidden_size, self.config.hidden_size)
        self.fc5 = nn.Linear(self.config.hidden_size, 1)

        self._init_weights(self.fc1)
        self._init_weights(self.fc2)
        self._init_weights(self.fc3)
        self._init_weights(self.fc4)
        self._init_weights(self.fc5)
        
    def _init_weights(self, module):
        if isinstance(module, nn.Linear):
            module.weight.data.normal_(mean=0.0, std=0.01)
            if module.bias is not None:
                module.bias.data.zero_()
        elif isinstance(module, nn.Embedding):
            module.weight.data.normal_(mean=0.0, std=0.01)
            if module.padding_idx is not None:
                module.weight.data[module.padding_idx].zero_()
        elif isinstance(module, nn.LayerNorm):
            module.bias.data.zero_()
            module.weight.data.fill_(1.0)
        
    def forward(self, inputs):
        encoder_outputs = self.model.encoder(**inputs)
        encoder_hidden_states = encoder_outputs[0]
        outputs = self.model.decoder(input_ids=torch.full((inputs['input_ids'].size(0),1),
                                            self.config.decoder_start_token_id,
                                            dtype=torch.long), encoder_hidden_states=encoder_hidden_states)
        last_hidden_states = outputs[0]
        output1 = self.fc1(last_hidden_states.view(-1, self.config.hidden_size))
        output2 = self.fc2(encoder_hidden_states[:, 0, :].view(-1, self.config.hidden_size))
        output = self.fc3(torch.hstack((output1, output2)))
        output = self.fc4(output)
        output = self.fc5(output)
        return output*100
    
config = AutoConfig.from_pretrained('ReactionT5-yield-prediction')
model = ReactionT5Yield(config)
model.load_state_dict(torch.load('ReactionT5-yield-prediction/pytorch_model.bin', map_location=torch.device('cpu')))
tokenizer = AutoTokenizer.from_pretrained('ReactionT5-yield-prediction')
inp = tokenizer(['REACTANT:CC(C)n1ncnc1-c1cn2c(n1)-c1cnc(O)cc1OCC2.CCN(C(C)C)C(C)C.Cl.NC(=O)[C@@H]1C[C@H](F)CN1REAGENT: PRODUCT:O=C(NNC(=O)C(F)(F)F)C(F)(F)F'], return_tensors='pt')
model(inp) # tensor([[19.1666]], grad_fn=<MulBackward0>)

Training Details

Training Procedure

<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> We used Open Reaction Database (ORD) dataset for model training. Following is the command used for training. For more information, please refer to the paper and GitHub repository.

python train.py
  --data_path='all_ord_reaction_uniq_with_attr_v3.tsv'
  --pretrained_model_name_or_path='sagawa/ZINC-t5'
  --model='t5'
  --epochs=100
  --batch_size=50
  --max_len=400
  --num_workers=4
  --weight_decay=0.05
  --gradient_accumulation_steps=1
  --batch_scheduler
  --print_freq=100
  --output_dir='./'

Results

R^2 DFT MFF Yield-BERT T5Chem CompoundT5 ReactionT5 (without finetuning)
Random 70/30 0.92 0.927 ± 0.007 0.951 ± 0.005 0.970 ± 0.003 0.971 ± 0.002 0.904 ± 0.0007
Test 1 0.80 0.851 0.838 0.811 0.855 0.919
Test 2 0.77 0.713 0.836 0.907 0.852 0.927
Test 3 0.64 0.635 0.738 0.789 0.712 0.847
Test 4 0.54 0.184 0.538 0.627 0.547 0.909
Avg. Tests 1–4 0.69 ± 0.104 0.596 ± 0.251 0.738 ± 0.122 0.785 ± 0.094 0.741 ± 0.126 0.900 ± 0.031

Citation [optional]

<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->

Model Card Authors [optional]

{{ model_card_authors | default("[More Information Needed]", true)}}

Model Card Contact

{{ model_card_contact | default("[More Information Needed]", true)}}