This model is trained on bert-base-uncased & Dataset - https://drive.google.com/file/d/1hyXTTubD9CRjL1MBSIU_iVxFCdtGXqgB/view?usp=sharing & Notebook - https://colab.research.google.com/drive/1zHrs3hosTXBPiy0P1O-x6Z2EQ9RZGUsQ?usp=sharing

precision recall f1-score support
commodity 0.50 0.44 0.47 66
company 0.68 0.71 0.69 179
delivery_cap 0.00 0.00 0.00 11
delivery_location 0.50 0.08 0.14 24
delivery_port 0.76 0.84 0.80 369
delivery_state 0.76 0.37 0.49 60
incoterms 0.89 0.98 0.93 207
measures 0.92 0.92 0.92 807
package_type 0.86 0.94 0.90 286
pickup_cap 0.83 0.94 0.89 143
pickup_location 0.65 0.73 0.69 406
pickup_port 0.00 0.00 0.00 5
pickup_state 0.83 0.76 0.79 68
quantity 0.91 0.88 0.90 199
stackable 0.62 0.60 0.61 60
volume 0.57 0.70 0.63 77
weight 0.81 0.81 0.81 303
---------------- ----------- -------- ---------- ---------
micro avg 0.80 0.83 0.81 3270
macro avg 0.65 0.63 0.63 3270
weighted avg 0.80 0.83 0.81 3270