<!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. -->
vnktrmnb/bert-base-multilingual-cased-finetuned-tydiqa
This model is a fine-tuned version of bert-base-multilingual-cased on an unknown dataset. It achieves the following results on the evaluation set:
- Train Loss: 0.6211
- Train End Logits Accuracy: 0.8146
- Train Start Logits Accuracy: 0.8612
- Validation Loss: 0.4720
- Validation End Logits Accuracy: 0.8544
- Validation Start Logits Accuracy: 0.9103
- Epoch: 1
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': None, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': True, 'is_legacy_optimizer': False, 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 836, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False}
- training_precision: float32
Training results
Train Loss | Train End Logits Accuracy | Train Start Logits Accuracy | Validation Loss | Validation End Logits Accuracy | Validation Start Logits Accuracy | Epoch |
---|---|---|---|---|---|---|
0.9948 | 0.7232 | 0.7723 | 0.4799 | 0.8500 | 0.9029 | 0 |
0.6211 | 0.8146 | 0.8612 | 0.4720 | 0.8544 | 0.9103 | 1 |
Framework versions
- Transformers 4.30.2
- TensorFlow 2.12.0
- Datasets 2.13.1
- Tokenizers 0.13.3