<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. -->
rhenus_v4.2
This model is a fine-tuned version of microsoft/layoutlmv3-base on the sroie dataset. It achieves the following results on the evaluation set:
- Loss: 0.1615
- Precision: 0.8368
- Recall: 0.8452
- F1: 0.8410
- Accuracy: 0.9731
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- training_steps: 7000
Training results
Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
---|---|---|---|---|---|---|---|
No log | 0.35 | 100 | 0.9405 | 0.0256 | 0.0010 | 0.0019 | 0.8497 |
No log | 0.71 | 200 | 0.8105 | 0.0256 | 0.0010 | 0.0019 | 0.8497 |
No log | 1.06 | 300 | 0.7300 | 0.0638 | 0.0030 | 0.0058 | 0.8498 |
No log | 1.41 | 400 | 0.6387 | 0.1122 | 0.0231 | 0.0383 | 0.8519 |
0.7458 | 1.77 | 500 | 0.5767 | 0.1799 | 0.0774 | 0.1082 | 0.8608 |
0.7458 | 2.12 | 600 | 0.5390 | 0.2662 | 0.1407 | 0.1841 | 0.8737 |
0.7458 | 2.47 | 700 | 0.5101 | 0.3203 | 0.1729 | 0.2245 | 0.8739 |
0.7458 | 2.83 | 800 | 0.4334 | 0.4030 | 0.3216 | 0.3577 | 0.8936 |
0.7458 | 3.18 | 900 | 0.3992 | 0.4494 | 0.3879 | 0.4164 | 0.9026 |
0.3964 | 3.53 | 1000 | 0.3712 | 0.5261 | 0.4251 | 0.4703 | 0.9060 |
0.3964 | 3.89 | 1100 | 0.3243 | 0.5590 | 0.5286 | 0.5434 | 0.9241 |
0.3964 | 4.24 | 1200 | 0.2917 | 0.6143 | 0.5538 | 0.5825 | 0.9334 |
0.3964 | 4.59 | 1300 | 0.2765 | 0.5855 | 0.6231 | 0.6037 | 0.9335 |
0.3964 | 4.95 | 1400 | 0.2629 | 0.6499 | 0.6362 | 0.6430 | 0.9407 |
0.224 | 5.3 | 1500 | 0.2278 | 0.7106 | 0.6935 | 0.7019 | 0.9516 |
0.224 | 5.65 | 1600 | 0.2143 | 0.7209 | 0.7166 | 0.7187 | 0.9534 |
0.224 | 6.01 | 1700 | 0.2144 | 0.7280 | 0.7075 | 0.7176 | 0.9519 |
0.224 | 6.36 | 1800 | 0.1938 | 0.7513 | 0.7286 | 0.7398 | 0.9556 |
0.224 | 6.71 | 1900 | 0.2017 | 0.7309 | 0.7508 | 0.7407 | 0.9560 |
0.1325 | 7.07 | 2000 | 0.1873 | 0.7560 | 0.7628 | 0.7594 | 0.9586 |
0.1325 | 7.42 | 2100 | 0.2002 | 0.738 | 0.7417 | 0.7398 | 0.9566 |
0.1325 | 7.77 | 2200 | 0.1781 | 0.7186 | 0.7829 | 0.7494 | 0.9562 |
0.1325 | 8.13 | 2300 | 0.1747 | 0.7939 | 0.7899 | 0.7919 | 0.9629 |
0.1325 | 8.48 | 2400 | 0.1698 | 0.7528 | 0.8111 | 0.7808 | 0.9633 |
0.0862 | 8.83 | 2500 | 0.1615 | 0.8147 | 0.8040 | 0.8093 | 0.9676 |
0.0862 | 9.19 | 2600 | 0.1624 | 0.8078 | 0.7940 | 0.8008 | 0.9662 |
0.0862 | 9.54 | 2700 | 0.1615 | 0.8020 | 0.8020 | 0.8020 | 0.9629 |
0.0862 | 9.89 | 2800 | 0.1539 | 0.7765 | 0.8030 | 0.7895 | 0.9647 |
0.0862 | 10.25 | 2900 | 0.1465 | 0.8106 | 0.8171 | 0.8138 | 0.9679 |
0.062 | 10.6 | 3000 | 0.1462 | 0.8367 | 0.8291 | 0.8329 | 0.9709 |
0.062 | 10.95 | 3100 | 0.1477 | 0.7806 | 0.8261 | 0.8027 | 0.9677 |
0.062 | 11.31 | 3200 | 0.1535 | 0.8465 | 0.8201 | 0.8331 | 0.9708 |
0.062 | 11.66 | 3300 | 0.1470 | 0.8307 | 0.8332 | 0.8319 | 0.9722 |
0.062 | 12.01 | 3400 | 0.1402 | 0.8140 | 0.8402 | 0.8269 | 0.9706 |
0.046 | 12.37 | 3500 | 0.1637 | 0.8520 | 0.8161 | 0.8337 | 0.9712 |
0.046 | 12.72 | 3600 | 0.1426 | 0.8207 | 0.8281 | 0.8244 | 0.9699 |
0.046 | 13.07 | 3700 | 0.1578 | 0.8431 | 0.8261 | 0.8345 | 0.9699 |
0.046 | 13.43 | 3800 | 0.1508 | 0.8442 | 0.8332 | 0.8386 | 0.9722 |
0.046 | 13.78 | 3900 | 0.1427 | 0.8184 | 0.8332 | 0.8257 | 0.9706 |
0.0342 | 14.13 | 4000 | 0.1465 | 0.8135 | 0.8372 | 0.8252 | 0.9708 |
0.0342 | 14.49 | 4100 | 0.1402 | 0.8292 | 0.8342 | 0.8317 | 0.9728 |
0.0342 | 14.84 | 4200 | 0.1478 | 0.8325 | 0.8442 | 0.8383 | 0.9740 |
0.0342 | 15.19 | 4300 | 0.1440 | 0.8254 | 0.8412 | 0.8333 | 0.9728 |
0.0342 | 15.55 | 4400 | 0.1481 | 0.8333 | 0.8342 | 0.8338 | 0.9717 |
0.028 | 15.9 | 4500 | 0.1532 | 0.8494 | 0.8392 | 0.8443 | 0.9723 |
0.028 | 16.25 | 4600 | 0.1515 | 0.8098 | 0.8513 | 0.8300 | 0.9703 |
0.028 | 16.61 | 4700 | 0.1555 | 0.8271 | 0.8412 | 0.8341 | 0.9722 |
0.028 | 16.96 | 4800 | 0.1458 | 0.8465 | 0.8482 | 0.8474 | 0.9749 |
0.028 | 17.31 | 4900 | 0.1572 | 0.8373 | 0.8432 | 0.8403 | 0.9715 |
0.0206 | 17.67 | 5000 | 0.1621 | 0.8187 | 0.8442 | 0.8313 | 0.9706 |
0.0206 | 18.02 | 5100 | 0.1527 | 0.8318 | 0.8452 | 0.8385 | 0.9731 |
0.0206 | 18.37 | 5200 | 0.1533 | 0.8291 | 0.8482 | 0.8385 | 0.9725 |
0.0206 | 18.73 | 5300 | 0.1596 | 0.8265 | 0.8472 | 0.8367 | 0.9711 |
0.0206 | 19.08 | 5400 | 0.1549 | 0.844 | 0.8482 | 0.8461 | 0.9734 |
0.0184 | 19.43 | 5500 | 0.1594 | 0.8263 | 0.8462 | 0.8361 | 0.9714 |
0.0184 | 19.79 | 5600 | 0.1660 | 0.8267 | 0.8392 | 0.8329 | 0.9702 |
0.0184 | 20.14 | 5700 | 0.1578 | 0.8174 | 0.8503 | 0.8335 | 0.9722 |
0.0184 | 20.49 | 5800 | 0.1598 | 0.8222 | 0.8412 | 0.8316 | 0.9714 |
0.0184 | 20.85 | 5900 | 0.1601 | 0.8380 | 0.8372 | 0.8376 | 0.9729 |
0.0157 | 21.2 | 6000 | 0.1584 | 0.8313 | 0.8422 | 0.8367 | 0.9719 |
0.0157 | 21.55 | 6100 | 0.1593 | 0.84 | 0.8442 | 0.8421 | 0.9719 |
0.0157 | 21.91 | 6200 | 0.1616 | 0.8292 | 0.8492 | 0.8391 | 0.9726 |
0.0157 | 22.26 | 6300 | 0.1641 | 0.8314 | 0.8472 | 0.8392 | 0.9717 |
0.0157 | 22.61 | 6400 | 0.1581 | 0.8385 | 0.8503 | 0.8443 | 0.9735 |
0.0129 | 22.97 | 6500 | 0.1592 | 0.8385 | 0.8503 | 0.8443 | 0.9737 |
0.0129 | 23.32 | 6600 | 0.1625 | 0.8327 | 0.8503 | 0.8414 | 0.9723 |
0.0129 | 23.67 | 6700 | 0.1613 | 0.8347 | 0.8472 | 0.8409 | 0.9723 |
0.0129 | 24.03 | 6800 | 0.1616 | 0.8335 | 0.8452 | 0.8393 | 0.9729 |
0.0129 | 24.38 | 6900 | 0.1611 | 0.8343 | 0.8452 | 0.8397 | 0.9731 |
0.0115 | 24.73 | 7000 | 0.1615 | 0.8368 | 0.8452 | 0.8410 | 0.9731 |
Framework versions
- Transformers 4.28.0
- Pytorch 2.0.1+cu118
- Datasets 2.2.2
- Tokenizers 0.13.3