<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. -->
vit-small_tobacco3482_kd_MSE
This model is a fine-tuned version of WinKawaks/vit-small-patch16-224 on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.2131
- Accuracy: 0.84
- Brier Loss: 0.2974
- Nll: 0.8913
- F1 Micro: 0.8400
- F1 Macro: 0.8190
- Ece: 0.2456
- Aurc: 0.0512
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 128
- eval_batch_size: 128
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 100
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | Brier Loss | Nll | F1 Micro | F1 Macro | Ece | Aurc |
---|---|---|---|---|---|---|---|---|---|---|
No log | 1.0 | 7 | 1.4711 | 0.21 | 0.8898 | 6.2752 | 0.2100 | 0.1403 | 0.2702 | 0.7673 |
No log | 2.0 | 14 | 1.0769 | 0.41 | 0.8120 | 5.2446 | 0.41 | 0.2713 | 0.3253 | 0.5170 |
No log | 3.0 | 21 | 0.7901 | 0.51 | 0.7057 | 2.6186 | 0.51 | 0.4114 | 0.3359 | 0.3162 |
No log | 4.0 | 28 | 0.6044 | 0.61 | 0.5736 | 1.8428 | 0.61 | 0.4989 | 0.3358 | 0.1889 |
No log | 5.0 | 35 | 0.4605 | 0.7 | 0.5009 | 1.3395 | 0.7 | 0.6120 | 0.3587 | 0.1321 |
No log | 6.0 | 42 | 0.4484 | 0.73 | 0.4373 | 1.4781 | 0.7300 | 0.6394 | 0.2751 | 0.1150 |
No log | 7.0 | 49 | 0.4406 | 0.765 | 0.4180 | 1.1081 | 0.765 | 0.7193 | 0.3066 | 0.0981 |
No log | 8.0 | 56 | 0.3421 | 0.82 | 0.3575 | 0.9309 | 0.82 | 0.7764 | 0.2867 | 0.0703 |
No log | 9.0 | 63 | 0.4201 | 0.75 | 0.3973 | 1.5859 | 0.75 | 0.7562 | 0.2618 | 0.1051 |
No log | 10.0 | 70 | 0.4086 | 0.795 | 0.3775 | 1.2870 | 0.795 | 0.7701 | 0.3104 | 0.0691 |
No log | 11.0 | 77 | 0.2867 | 0.82 | 0.3251 | 1.2141 | 0.82 | 0.7996 | 0.2511 | 0.0683 |
No log | 12.0 | 84 | 0.2964 | 0.825 | 0.3233 | 1.0042 | 0.825 | 0.8028 | 0.2801 | 0.0538 |
No log | 13.0 | 91 | 0.3010 | 0.81 | 0.3351 | 1.0085 | 0.81 | 0.7735 | 0.2678 | 0.0584 |
No log | 14.0 | 98 | 0.2741 | 0.835 | 0.3194 | 1.0574 | 0.835 | 0.8127 | 0.2982 | 0.0542 |
No log | 15.0 | 105 | 0.2524 | 0.845 | 0.3228 | 1.1162 | 0.845 | 0.8225 | 0.2911 | 0.0568 |
No log | 16.0 | 112 | 0.2652 | 0.83 | 0.3154 | 0.8145 | 0.83 | 0.8130 | 0.2786 | 0.0516 |
No log | 17.0 | 119 | 0.2478 | 0.83 | 0.3241 | 1.1158 | 0.83 | 0.8034 | 0.2776 | 0.0683 |
No log | 18.0 | 126 | 0.2526 | 0.85 | 0.3112 | 1.0132 | 0.85 | 0.8324 | 0.2757 | 0.0517 |
No log | 19.0 | 133 | 0.2423 | 0.855 | 0.3023 | 1.0623 | 0.855 | 0.8382 | 0.2727 | 0.0561 |
No log | 20.0 | 140 | 0.2294 | 0.83 | 0.3112 | 1.1134 | 0.83 | 0.8139 | 0.2697 | 0.0703 |
No log | 21.0 | 147 | 0.2380 | 0.835 | 0.3080 | 0.9961 | 0.835 | 0.8190 | 0.2841 | 0.0489 |
No log | 22.0 | 154 | 0.2362 | 0.84 | 0.3034 | 0.9586 | 0.8400 | 0.8145 | 0.2626 | 0.0520 |
No log | 23.0 | 161 | 0.2252 | 0.86 | 0.2946 | 1.1006 | 0.8600 | 0.8471 | 0.2830 | 0.0495 |
No log | 24.0 | 168 | 0.2325 | 0.85 | 0.2985 | 0.9069 | 0.85 | 0.8288 | 0.2681 | 0.0533 |
No log | 25.0 | 175 | 0.2335 | 0.825 | 0.3005 | 0.8930 | 0.825 | 0.8000 | 0.2640 | 0.0496 |
No log | 26.0 | 182 | 0.2309 | 0.845 | 0.2984 | 1.0007 | 0.845 | 0.8308 | 0.2573 | 0.0536 |
No log | 27.0 | 189 | 0.2265 | 0.835 | 0.3051 | 1.0092 | 0.835 | 0.8158 | 0.2626 | 0.0603 |
No log | 28.0 | 196 | 0.2192 | 0.83 | 0.2977 | 1.0186 | 0.83 | 0.8019 | 0.2516 | 0.0572 |
No log | 29.0 | 203 | 0.2276 | 0.83 | 0.3017 | 0.9407 | 0.83 | 0.8179 | 0.2553 | 0.0480 |
No log | 30.0 | 210 | 0.2131 | 0.84 | 0.2992 | 0.9232 | 0.8400 | 0.8195 | 0.2541 | 0.0546 |
No log | 31.0 | 217 | 0.2197 | 0.845 | 0.2998 | 0.9012 | 0.845 | 0.8301 | 0.2537 | 0.0569 |
No log | 32.0 | 224 | 0.2138 | 0.85 | 0.2972 | 0.9117 | 0.85 | 0.8349 | 0.2777 | 0.0551 |
No log | 33.0 | 231 | 0.2167 | 0.85 | 0.2969 | 1.0176 | 0.85 | 0.8390 | 0.2676 | 0.0535 |
No log | 34.0 | 238 | 0.2114 | 0.84 | 0.2959 | 0.8912 | 0.8400 | 0.8190 | 0.2512 | 0.0514 |
No log | 35.0 | 245 | 0.2145 | 0.845 | 0.2952 | 0.8960 | 0.845 | 0.8216 | 0.2638 | 0.0492 |
No log | 36.0 | 252 | 0.2146 | 0.845 | 0.2960 | 0.9093 | 0.845 | 0.8301 | 0.2841 | 0.0519 |
No log | 37.0 | 259 | 0.2157 | 0.845 | 0.2973 | 0.9043 | 0.845 | 0.8216 | 0.2614 | 0.0520 |
No log | 38.0 | 266 | 0.2116 | 0.84 | 0.2949 | 0.8871 | 0.8400 | 0.8190 | 0.2639 | 0.0512 |
No log | 39.0 | 273 | 0.2138 | 0.845 | 0.2963 | 0.9002 | 0.845 | 0.8301 | 0.2497 | 0.0512 |
No log | 40.0 | 280 | 0.2129 | 0.84 | 0.2960 | 0.9731 | 0.8400 | 0.8190 | 0.2500 | 0.0511 |
No log | 41.0 | 287 | 0.2139 | 0.845 | 0.2966 | 1.0111 | 0.845 | 0.8301 | 0.2750 | 0.0523 |
No log | 42.0 | 294 | 0.2134 | 0.84 | 0.2959 | 0.9515 | 0.8400 | 0.8190 | 0.2577 | 0.0506 |
No log | 43.0 | 301 | 0.2134 | 0.84 | 0.2972 | 0.9022 | 0.8400 | 0.8190 | 0.2538 | 0.0517 |
No log | 44.0 | 308 | 0.2131 | 0.84 | 0.2966 | 0.9569 | 0.8400 | 0.8190 | 0.2683 | 0.0519 |
No log | 45.0 | 315 | 0.2131 | 0.84 | 0.2965 | 0.8931 | 0.8400 | 0.8190 | 0.2504 | 0.0513 |
No log | 46.0 | 322 | 0.2119 | 0.84 | 0.2963 | 0.8998 | 0.8400 | 0.8190 | 0.2535 | 0.0513 |
No log | 47.0 | 329 | 0.2129 | 0.84 | 0.2973 | 0.9017 | 0.8400 | 0.8190 | 0.2527 | 0.0514 |
No log | 48.0 | 336 | 0.2130 | 0.84 | 0.2971 | 0.8947 | 0.8400 | 0.8190 | 0.2520 | 0.0510 |
No log | 49.0 | 343 | 0.2123 | 0.84 | 0.2972 | 0.9482 | 0.8400 | 0.8190 | 0.2583 | 0.0515 |
No log | 50.0 | 350 | 0.2124 | 0.84 | 0.2970 | 0.9083 | 0.8400 | 0.8190 | 0.2604 | 0.0513 |
No log | 51.0 | 357 | 0.2130 | 0.84 | 0.2974 | 0.8978 | 0.8400 | 0.8190 | 0.2446 | 0.0513 |
No log | 52.0 | 364 | 0.2127 | 0.84 | 0.2975 | 0.8932 | 0.8400 | 0.8190 | 0.2457 | 0.0513 |
No log | 53.0 | 371 | 0.2125 | 0.84 | 0.2972 | 0.8935 | 0.8400 | 0.8190 | 0.2508 | 0.0512 |
No log | 54.0 | 378 | 0.2130 | 0.84 | 0.2975 | 0.8989 | 0.8400 | 0.8190 | 0.2551 | 0.0513 |
No log | 55.0 | 385 | 0.2128 | 0.84 | 0.2972 | 0.8941 | 0.8400 | 0.8190 | 0.2448 | 0.0511 |
No log | 56.0 | 392 | 0.2128 | 0.84 | 0.2974 | 0.8944 | 0.8400 | 0.8190 | 0.2459 | 0.0515 |
No log | 57.0 | 399 | 0.2128 | 0.84 | 0.2973 | 0.8934 | 0.8400 | 0.8190 | 0.2517 | 0.0512 |
No log | 58.0 | 406 | 0.2130 | 0.84 | 0.2973 | 0.8936 | 0.8400 | 0.8190 | 0.2448 | 0.0513 |
No log | 59.0 | 413 | 0.2129 | 0.84 | 0.2973 | 0.8951 | 0.8400 | 0.8190 | 0.2383 | 0.0513 |
No log | 60.0 | 420 | 0.2128 | 0.84 | 0.2972 | 0.8921 | 0.8400 | 0.8190 | 0.2519 | 0.0512 |
No log | 61.0 | 427 | 0.2125 | 0.84 | 0.2974 | 0.8959 | 0.8400 | 0.8190 | 0.2518 | 0.0515 |
No log | 62.0 | 434 | 0.2128 | 0.84 | 0.2973 | 0.8937 | 0.8400 | 0.8190 | 0.2385 | 0.0513 |
No log | 63.0 | 441 | 0.2131 | 0.84 | 0.2974 | 0.8933 | 0.8400 | 0.8190 | 0.2551 | 0.0512 |
No log | 64.0 | 448 | 0.2129 | 0.84 | 0.2974 | 0.8930 | 0.8400 | 0.8190 | 0.2388 | 0.0512 |
No log | 65.0 | 455 | 0.2129 | 0.84 | 0.2973 | 0.8927 | 0.8400 | 0.8190 | 0.2447 | 0.0513 |
No log | 66.0 | 462 | 0.2129 | 0.84 | 0.2974 | 0.8930 | 0.8400 | 0.8190 | 0.2385 | 0.0513 |
No log | 67.0 | 469 | 0.2129 | 0.84 | 0.2974 | 0.8929 | 0.8400 | 0.8190 | 0.2458 | 0.0512 |
No log | 68.0 | 476 | 0.2130 | 0.84 | 0.2975 | 0.8930 | 0.8400 | 0.8190 | 0.2455 | 0.0512 |
No log | 69.0 | 483 | 0.2130 | 0.84 | 0.2973 | 0.8917 | 0.8400 | 0.8190 | 0.2459 | 0.0513 |
No log | 70.0 | 490 | 0.2129 | 0.84 | 0.2973 | 0.8913 | 0.8400 | 0.8190 | 0.2520 | 0.0513 |
No log | 71.0 | 497 | 0.2131 | 0.84 | 0.2974 | 0.8919 | 0.8400 | 0.8190 | 0.2519 | 0.0513 |
0.1234 | 72.0 | 504 | 0.2130 | 0.84 | 0.2973 | 0.8917 | 0.8400 | 0.8190 | 0.2457 | 0.0511 |
0.1234 | 73.0 | 511 | 0.2129 | 0.84 | 0.2974 | 0.8917 | 0.8400 | 0.8190 | 0.2455 | 0.0512 |
0.1234 | 74.0 | 518 | 0.2129 | 0.84 | 0.2974 | 0.8913 | 0.8400 | 0.8190 | 0.2455 | 0.0512 |
0.1234 | 75.0 | 525 | 0.2130 | 0.84 | 0.2973 | 0.8917 | 0.8400 | 0.8190 | 0.2519 | 0.0513 |
0.1234 | 76.0 | 532 | 0.2129 | 0.84 | 0.2974 | 0.8921 | 0.8400 | 0.8190 | 0.2455 | 0.0512 |
0.1234 | 77.0 | 539 | 0.2130 | 0.84 | 0.2973 | 0.8919 | 0.8400 | 0.8190 | 0.2455 | 0.0511 |
0.1234 | 78.0 | 546 | 0.2130 | 0.84 | 0.2973 | 0.8924 | 0.8400 | 0.8190 | 0.2455 | 0.0511 |
0.1234 | 79.0 | 553 | 0.2130 | 0.84 | 0.2974 | 0.8919 | 0.8400 | 0.8190 | 0.2456 | 0.0512 |
0.1234 | 80.0 | 560 | 0.2130 | 0.84 | 0.2973 | 0.8915 | 0.8400 | 0.8190 | 0.2515 | 0.0512 |
0.1234 | 81.0 | 567 | 0.2130 | 0.84 | 0.2973 | 0.8915 | 0.8400 | 0.8190 | 0.2456 | 0.0511 |
0.1234 | 82.0 | 574 | 0.2130 | 0.84 | 0.2974 | 0.8915 | 0.8400 | 0.8190 | 0.2456 | 0.0512 |
0.1234 | 83.0 | 581 | 0.2130 | 0.84 | 0.2973 | 0.8916 | 0.8400 | 0.8190 | 0.2516 | 0.0512 |
0.1234 | 84.0 | 588 | 0.2130 | 0.84 | 0.2974 | 0.8920 | 0.8400 | 0.8190 | 0.2456 | 0.0512 |
0.1234 | 85.0 | 595 | 0.2130 | 0.84 | 0.2974 | 0.8915 | 0.8400 | 0.8190 | 0.2456 | 0.0512 |
0.1234 | 86.0 | 602 | 0.2130 | 0.84 | 0.2974 | 0.8917 | 0.8400 | 0.8190 | 0.2456 | 0.0512 |
0.1234 | 87.0 | 609 | 0.2130 | 0.84 | 0.2974 | 0.8913 | 0.8400 | 0.8190 | 0.2517 | 0.0512 |
0.1234 | 88.0 | 616 | 0.2130 | 0.84 | 0.2973 | 0.8916 | 0.8400 | 0.8190 | 0.2456 | 0.0512 |
0.1234 | 89.0 | 623 | 0.2130 | 0.84 | 0.2974 | 0.8912 | 0.8400 | 0.8190 | 0.2456 | 0.0512 |
0.1234 | 90.0 | 630 | 0.2130 | 0.84 | 0.2973 | 0.8914 | 0.8400 | 0.8190 | 0.2517 | 0.0512 |
0.1234 | 91.0 | 637 | 0.2131 | 0.84 | 0.2974 | 0.8915 | 0.8400 | 0.8190 | 0.2456 | 0.0512 |
0.1234 | 92.0 | 644 | 0.2130 | 0.84 | 0.2973 | 0.8912 | 0.8400 | 0.8190 | 0.2456 | 0.0512 |
0.1234 | 93.0 | 651 | 0.2130 | 0.84 | 0.2974 | 0.8915 | 0.8400 | 0.8190 | 0.2456 | 0.0512 |
0.1234 | 94.0 | 658 | 0.2130 | 0.84 | 0.2973 | 0.8913 | 0.8400 | 0.8190 | 0.2456 | 0.0512 |
0.1234 | 95.0 | 665 | 0.2130 | 0.84 | 0.2973 | 0.8913 | 0.8400 | 0.8190 | 0.2456 | 0.0512 |
0.1234 | 96.0 | 672 | 0.2131 | 0.84 | 0.2974 | 0.8915 | 0.8400 | 0.8190 | 0.2456 | 0.0512 |
0.1234 | 97.0 | 679 | 0.2131 | 0.84 | 0.2973 | 0.8914 | 0.8400 | 0.8190 | 0.2517 | 0.0512 |
0.1234 | 98.0 | 686 | 0.2130 | 0.84 | 0.2974 | 0.8912 | 0.8400 | 0.8190 | 0.2456 | 0.0512 |
0.1234 | 99.0 | 693 | 0.2131 | 0.84 | 0.2974 | 0.8913 | 0.8400 | 0.8190 | 0.2456 | 0.0512 |
0.1234 | 100.0 | 700 | 0.2131 | 0.84 | 0.2974 | 0.8913 | 0.8400 | 0.8190 | 0.2456 | 0.0512 |
Framework versions
- Transformers 4.26.1
- Pytorch 1.13.1.post200
- Datasets 2.9.0
- Tokenizers 0.13.2