<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. -->
vit-small_tobacco3482_kd_CEKD_t2.5_a0.5
This model is a fine-tuned version of WinKawaks/vit-small-patch16-224 on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.4300
- Accuracy: 0.83
- Brier Loss: 0.2807
- Nll: 1.0350
- F1 Micro: 0.83
- F1 Macro: 0.8295
- Ece: 0.2287
- Aurc: 0.0560
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 128
- eval_batch_size: 128
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 100
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | Brier Loss | Nll | F1 Micro | F1 Macro | Ece | Aurc |
---|---|---|---|---|---|---|---|---|---|---|
No log | 1.0 | 7 | 1.6525 | 0.225 | 0.8757 | 5.3231 | 0.225 | 0.1387 | 0.2689 | 0.6977 |
No log | 2.0 | 14 | 1.3106 | 0.405 | 0.7470 | 3.3487 | 0.405 | 0.2195 | 0.2936 | 0.4032 |
No log | 3.0 | 21 | 0.9127 | 0.585 | 0.5785 | 1.8686 | 0.585 | 0.5142 | 0.2974 | 0.2067 |
No log | 4.0 | 28 | 0.7280 | 0.715 | 0.4339 | 1.6780 | 0.715 | 0.6761 | 0.2672 | 0.1204 |
No log | 5.0 | 35 | 0.6523 | 0.775 | 0.3676 | 1.6537 | 0.775 | 0.7619 | 0.2554 | 0.0929 |
No log | 6.0 | 42 | 0.5888 | 0.785 | 0.3502 | 1.3926 | 0.785 | 0.7538 | 0.2277 | 0.0908 |
No log | 7.0 | 49 | 0.6113 | 0.805 | 0.3326 | 1.7118 | 0.805 | 0.7903 | 0.2428 | 0.0803 |
No log | 8.0 | 56 | 0.5404 | 0.785 | 0.3178 | 1.1557 | 0.785 | 0.7671 | 0.2183 | 0.0716 |
No log | 9.0 | 63 | 0.5380 | 0.82 | 0.3051 | 1.3231 | 0.82 | 0.8072 | 0.2168 | 0.0773 |
No log | 10.0 | 70 | 0.6035 | 0.775 | 0.3508 | 1.3888 | 0.775 | 0.7682 | 0.2191 | 0.0812 |
No log | 11.0 | 77 | 0.5473 | 0.795 | 0.3202 | 1.2622 | 0.795 | 0.7740 | 0.2303 | 0.0626 |
No log | 12.0 | 84 | 0.4860 | 0.825 | 0.2937 | 1.3575 | 0.825 | 0.8053 | 0.2392 | 0.0727 |
No log | 13.0 | 91 | 0.5046 | 0.81 | 0.3032 | 1.1857 | 0.81 | 0.8086 | 0.2248 | 0.0564 |
No log | 14.0 | 98 | 0.4745 | 0.825 | 0.2870 | 1.2338 | 0.825 | 0.8089 | 0.2441 | 0.0518 |
No log | 15.0 | 105 | 0.4764 | 0.81 | 0.2943 | 1.0325 | 0.81 | 0.8110 | 0.1935 | 0.0556 |
No log | 16.0 | 112 | 0.4918 | 0.81 | 0.3062 | 1.0551 | 0.81 | 0.8015 | 0.2198 | 0.0587 |
No log | 17.0 | 119 | 0.4757 | 0.815 | 0.2970 | 1.4203 | 0.815 | 0.7965 | 0.2263 | 0.0850 |
No log | 18.0 | 126 | 0.4586 | 0.825 | 0.2926 | 1.0361 | 0.825 | 0.8268 | 0.2279 | 0.0583 |
No log | 19.0 | 133 | 0.4503 | 0.835 | 0.2855 | 1.1476 | 0.835 | 0.8301 | 0.2392 | 0.0589 |
No log | 20.0 | 140 | 0.4780 | 0.805 | 0.3105 | 0.9928 | 0.805 | 0.7902 | 0.1988 | 0.0775 |
No log | 21.0 | 147 | 0.4965 | 0.8 | 0.3205 | 1.1887 | 0.8000 | 0.8029 | 0.2410 | 0.0702 |
No log | 22.0 | 154 | 0.4753 | 0.815 | 0.3016 | 0.9609 | 0.815 | 0.8169 | 0.2163 | 0.0580 |
No log | 23.0 | 161 | 0.4733 | 0.8 | 0.3074 | 1.2566 | 0.8000 | 0.8001 | 0.2162 | 0.0704 |
No log | 24.0 | 168 | 0.4472 | 0.815 | 0.2888 | 1.0352 | 0.815 | 0.8187 | 0.2317 | 0.0590 |
No log | 25.0 | 175 | 0.4434 | 0.815 | 0.2854 | 0.9874 | 0.815 | 0.8186 | 0.2149 | 0.0554 |
No log | 26.0 | 182 | 0.4316 | 0.82 | 0.2754 | 1.0477 | 0.82 | 0.8267 | 0.2195 | 0.0508 |
No log | 27.0 | 189 | 0.4276 | 0.83 | 0.2751 | 1.1016 | 0.83 | 0.8336 | 0.2050 | 0.0525 |
No log | 28.0 | 196 | 0.4329 | 0.82 | 0.2795 | 1.0537 | 0.82 | 0.8220 | 0.2158 | 0.0611 |
No log | 29.0 | 203 | 0.4327 | 0.82 | 0.2827 | 1.1766 | 0.82 | 0.8237 | 0.2024 | 0.0603 |
No log | 30.0 | 210 | 0.4317 | 0.82 | 0.2820 | 1.0331 | 0.82 | 0.8219 | 0.2083 | 0.0611 |
No log | 31.0 | 217 | 0.4316 | 0.82 | 0.2803 | 1.0974 | 0.82 | 0.8263 | 0.1984 | 0.0575 |
No log | 32.0 | 224 | 0.4340 | 0.82 | 0.2833 | 1.0384 | 0.82 | 0.8240 | 0.2202 | 0.0590 |
No log | 33.0 | 231 | 0.4333 | 0.81 | 0.2824 | 1.0355 | 0.81 | 0.8160 | 0.2103 | 0.0586 |
No log | 34.0 | 238 | 0.4309 | 0.83 | 0.2817 | 1.1015 | 0.83 | 0.8307 | 0.2107 | 0.0577 |
No log | 35.0 | 245 | 0.4321 | 0.82 | 0.2817 | 1.0359 | 0.82 | 0.8229 | 0.2147 | 0.0590 |
No log | 36.0 | 252 | 0.4304 | 0.825 | 0.2802 | 1.1016 | 0.825 | 0.8257 | 0.2137 | 0.0569 |
No log | 37.0 | 259 | 0.4303 | 0.825 | 0.2811 | 1.0990 | 0.825 | 0.8268 | 0.2149 | 0.0581 |
No log | 38.0 | 266 | 0.4314 | 0.825 | 0.2814 | 1.1003 | 0.825 | 0.8257 | 0.2163 | 0.0581 |
No log | 39.0 | 273 | 0.4302 | 0.82 | 0.2806 | 1.1007 | 0.82 | 0.8226 | 0.2102 | 0.0576 |
No log | 40.0 | 280 | 0.4307 | 0.825 | 0.2809 | 1.0376 | 0.825 | 0.8264 | 0.2049 | 0.0573 |
No log | 41.0 | 287 | 0.4303 | 0.82 | 0.2808 | 1.0434 | 0.82 | 0.8226 | 0.2096 | 0.0574 |
No log | 42.0 | 294 | 0.4310 | 0.825 | 0.2817 | 1.0376 | 0.825 | 0.8268 | 0.2140 | 0.0580 |
No log | 43.0 | 301 | 0.4310 | 0.825 | 0.2813 | 1.0391 | 0.825 | 0.8257 | 0.2147 | 0.0580 |
No log | 44.0 | 308 | 0.4301 | 0.825 | 0.2808 | 1.0389 | 0.825 | 0.8257 | 0.2064 | 0.0573 |
No log | 45.0 | 315 | 0.4305 | 0.83 | 0.2811 | 1.0419 | 0.83 | 0.8307 | 0.2300 | 0.0577 |
No log | 46.0 | 322 | 0.4303 | 0.82 | 0.2808 | 1.0423 | 0.82 | 0.8226 | 0.2197 | 0.0582 |
No log | 47.0 | 329 | 0.4304 | 0.825 | 0.2811 | 1.0405 | 0.825 | 0.8257 | 0.2240 | 0.0580 |
No log | 48.0 | 336 | 0.4300 | 0.82 | 0.2805 | 1.0407 | 0.82 | 0.8226 | 0.2105 | 0.0574 |
No log | 49.0 | 343 | 0.4307 | 0.825 | 0.2812 | 1.0381 | 0.825 | 0.8257 | 0.2252 | 0.0577 |
No log | 50.0 | 350 | 0.4304 | 0.82 | 0.2810 | 1.0422 | 0.82 | 0.8226 | 0.2353 | 0.0578 |
No log | 51.0 | 357 | 0.4310 | 0.825 | 0.2813 | 1.0382 | 0.825 | 0.8264 | 0.2153 | 0.0569 |
No log | 52.0 | 364 | 0.4309 | 0.82 | 0.2814 | 1.0380 | 0.82 | 0.8226 | 0.2282 | 0.0574 |
No log | 53.0 | 371 | 0.4307 | 0.825 | 0.2813 | 1.0357 | 0.825 | 0.8264 | 0.2250 | 0.0568 |
No log | 54.0 | 378 | 0.4305 | 0.82 | 0.2810 | 1.0366 | 0.82 | 0.8226 | 0.2284 | 0.0575 |
No log | 55.0 | 385 | 0.4304 | 0.825 | 0.2811 | 1.0351 | 0.825 | 0.8264 | 0.2241 | 0.0566 |
No log | 56.0 | 392 | 0.4308 | 0.825 | 0.2813 | 1.0369 | 0.825 | 0.8257 | 0.2414 | 0.0572 |
No log | 57.0 | 399 | 0.4305 | 0.825 | 0.2810 | 1.0356 | 0.825 | 0.8257 | 0.2322 | 0.0571 |
No log | 58.0 | 406 | 0.4302 | 0.82 | 0.2808 | 1.0359 | 0.82 | 0.8226 | 0.2368 | 0.0569 |
No log | 59.0 | 413 | 0.4302 | 0.82 | 0.2809 | 1.0346 | 0.82 | 0.8226 | 0.2271 | 0.0569 |
No log | 60.0 | 420 | 0.4303 | 0.82 | 0.2809 | 1.0357 | 0.82 | 0.8226 | 0.2272 | 0.0570 |
No log | 61.0 | 427 | 0.4304 | 0.825 | 0.2810 | 1.0360 | 0.825 | 0.8257 | 0.2325 | 0.0569 |
No log | 62.0 | 434 | 0.4303 | 0.825 | 0.2809 | 1.0360 | 0.825 | 0.8257 | 0.2321 | 0.0568 |
No log | 63.0 | 441 | 0.4303 | 0.83 | 0.2809 | 1.0356 | 0.83 | 0.8295 | 0.2300 | 0.0562 |
No log | 64.0 | 448 | 0.4304 | 0.825 | 0.2810 | 1.0347 | 0.825 | 0.8264 | 0.2242 | 0.0564 |
No log | 65.0 | 455 | 0.4301 | 0.83 | 0.2808 | 1.0361 | 0.83 | 0.8295 | 0.2384 | 0.0564 |
No log | 66.0 | 462 | 0.4303 | 0.83 | 0.2810 | 1.0359 | 0.83 | 0.8295 | 0.2293 | 0.0563 |
No log | 67.0 | 469 | 0.4302 | 0.83 | 0.2809 | 1.0360 | 0.83 | 0.8295 | 0.2386 | 0.0564 |
No log | 68.0 | 476 | 0.4304 | 0.83 | 0.2810 | 1.0360 | 0.83 | 0.8295 | 0.2384 | 0.0563 |
No log | 69.0 | 483 | 0.4305 | 0.83 | 0.2812 | 1.0355 | 0.83 | 0.8295 | 0.2295 | 0.0564 |
No log | 70.0 | 490 | 0.4302 | 0.825 | 0.2808 | 1.0354 | 0.825 | 0.8264 | 0.2239 | 0.0561 |
No log | 71.0 | 497 | 0.4305 | 0.83 | 0.2812 | 1.0352 | 0.83 | 0.8295 | 0.2296 | 0.0564 |
0.1776 | 72.0 | 504 | 0.4303 | 0.83 | 0.2808 | 1.0356 | 0.83 | 0.8295 | 0.2287 | 0.0561 |
0.1776 | 73.0 | 511 | 0.4301 | 0.825 | 0.2807 | 1.0351 | 0.825 | 0.8264 | 0.2348 | 0.0563 |
0.1776 | 74.0 | 518 | 0.4304 | 0.83 | 0.2811 | 1.0353 | 0.83 | 0.8295 | 0.2195 | 0.0562 |
0.1776 | 75.0 | 525 | 0.4301 | 0.825 | 0.2808 | 1.0355 | 0.825 | 0.8257 | 0.2320 | 0.0568 |
0.1776 | 76.0 | 532 | 0.4302 | 0.83 | 0.2808 | 1.0348 | 0.83 | 0.8295 | 0.2289 | 0.0561 |
0.1776 | 77.0 | 539 | 0.4301 | 0.83 | 0.2808 | 1.0355 | 0.83 | 0.8295 | 0.2300 | 0.0562 |
0.1776 | 78.0 | 546 | 0.4301 | 0.83 | 0.2808 | 1.0354 | 0.83 | 0.8295 | 0.2394 | 0.0563 |
0.1776 | 79.0 | 553 | 0.4302 | 0.83 | 0.2809 | 1.0346 | 0.83 | 0.8295 | 0.2287 | 0.0560 |
0.1776 | 80.0 | 560 | 0.4302 | 0.83 | 0.2809 | 1.0353 | 0.83 | 0.8295 | 0.2299 | 0.0563 |
0.1776 | 81.0 | 567 | 0.4302 | 0.83 | 0.2809 | 1.0350 | 0.83 | 0.8295 | 0.2299 | 0.0563 |
0.1776 | 82.0 | 574 | 0.4302 | 0.83 | 0.2808 | 1.0354 | 0.83 | 0.8295 | 0.2298 | 0.0560 |
0.1776 | 83.0 | 581 | 0.4302 | 0.83 | 0.2809 | 1.0350 | 0.83 | 0.8295 | 0.2299 | 0.0561 |
0.1776 | 84.0 | 588 | 0.4299 | 0.83 | 0.2807 | 1.0352 | 0.83 | 0.8295 | 0.2287 | 0.0561 |
0.1776 | 85.0 | 595 | 0.4301 | 0.83 | 0.2808 | 1.0349 | 0.83 | 0.8295 | 0.2296 | 0.0562 |
0.1776 | 86.0 | 602 | 0.4301 | 0.83 | 0.2808 | 1.0351 | 0.83 | 0.8295 | 0.2287 | 0.0562 |
0.1776 | 87.0 | 609 | 0.4300 | 0.83 | 0.2807 | 1.0351 | 0.83 | 0.8295 | 0.2297 | 0.0561 |
0.1776 | 88.0 | 616 | 0.4300 | 0.83 | 0.2807 | 1.0349 | 0.83 | 0.8295 | 0.2287 | 0.0562 |
0.1776 | 89.0 | 623 | 0.4300 | 0.83 | 0.2807 | 1.0353 | 0.83 | 0.8295 | 0.2296 | 0.0560 |
0.1776 | 90.0 | 630 | 0.4300 | 0.83 | 0.2807 | 1.0349 | 0.83 | 0.8295 | 0.2297 | 0.0559 |
0.1776 | 91.0 | 637 | 0.4300 | 0.83 | 0.2807 | 1.0352 | 0.83 | 0.8295 | 0.2296 | 0.0562 |
0.1776 | 92.0 | 644 | 0.4300 | 0.83 | 0.2807 | 1.0351 | 0.83 | 0.8295 | 0.2287 | 0.0561 |
0.1776 | 93.0 | 651 | 0.4300 | 0.83 | 0.2807 | 1.0351 | 0.83 | 0.8295 | 0.2297 | 0.0562 |
0.1776 | 94.0 | 658 | 0.4300 | 0.83 | 0.2807 | 1.0349 | 0.83 | 0.8295 | 0.2297 | 0.0560 |
0.1776 | 95.0 | 665 | 0.4300 | 0.83 | 0.2807 | 1.0350 | 0.83 | 0.8295 | 0.2297 | 0.0562 |
0.1776 | 96.0 | 672 | 0.4300 | 0.83 | 0.2807 | 1.0349 | 0.83 | 0.8295 | 0.2296 | 0.0561 |
0.1776 | 97.0 | 679 | 0.4300 | 0.83 | 0.2807 | 1.0350 | 0.83 | 0.8295 | 0.2296 | 0.0560 |
0.1776 | 98.0 | 686 | 0.4300 | 0.83 | 0.2807 | 1.0350 | 0.83 | 0.8295 | 0.2296 | 0.0560 |
0.1776 | 99.0 | 693 | 0.4300 | 0.83 | 0.2807 | 1.0350 | 0.83 | 0.8295 | 0.2287 | 0.0560 |
0.1776 | 100.0 | 700 | 0.4300 | 0.83 | 0.2807 | 1.0350 | 0.83 | 0.8295 | 0.2287 | 0.0560 |
Framework versions
- Transformers 4.26.1
- Pytorch 1.13.1.post200
- Datasets 2.9.0
- Tokenizers 0.13.2