<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. -->
vit-small_rvl_cdip_100_examples_per_class_simkd_CEKD_tNone_aNone_tNone_gNone
This model is a fine-tuned version of WinKawaks/vit-small-patch16-224 on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.0689
- Accuracy: 0.6
- Brier Loss: 0.6433
- Nll: 2.4057
- F1 Micro: 0.6
- F1 Macro: 0.6101
- Ece: 0.3353
- Aurc: 0.1685
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 100
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | Brier Loss | Nll | F1 Micro | F1 Macro | Ece | Aurc |
---|---|---|---|---|---|---|---|---|---|---|
No log | 1.0 | 25 | 0.0859 | 0.0675 | 0.9373 | 7.3238 | 0.0675 | 0.0163 | 0.1099 | 0.9351 |
No log | 2.0 | 50 | 0.0810 | 0.0675 | 0.9372 | 7.0436 | 0.0675 | 0.0153 | 0.1067 | 0.9365 |
No log | 3.0 | 75 | 0.0804 | 0.0725 | 0.9368 | 6.5507 | 0.0725 | 0.0268 | 0.1041 | 0.9438 |
No log | 4.0 | 100 | 0.0800 | 0.0725 | 0.9362 | 6.2816 | 0.0725 | 0.0293 | 0.1056 | 0.9404 |
No log | 5.0 | 125 | 0.0797 | 0.0775 | 0.9352 | 6.1624 | 0.0775 | 0.0225 | 0.1125 | 0.9037 |
No log | 6.0 | 150 | 0.0793 | 0.0875 | 0.9337 | 6.0364 | 0.0875 | 0.0376 | 0.1173 | 0.8572 |
No log | 7.0 | 175 | 0.0788 | 0.13 | 0.9307 | 4.5728 | 0.13 | 0.0918 | 0.1430 | 0.7693 |
No log | 8.0 | 200 | 0.0781 | 0.2325 | 0.9246 | 3.6321 | 0.2325 | 0.1958 | 0.2225 | 0.5621 |
No log | 9.0 | 225 | 0.0770 | 0.31 | 0.9103 | 3.3593 | 0.31 | 0.2693 | 0.2782 | 0.4570 |
No log | 10.0 | 250 | 0.0755 | 0.34 | 0.8830 | 2.9550 | 0.34 | 0.2911 | 0.2951 | 0.4131 |
No log | 11.0 | 275 | 0.0740 | 0.4075 | 0.8559 | 2.6844 | 0.4075 | 0.3802 | 0.3347 | 0.3241 |
No log | 12.0 | 300 | 0.0730 | 0.47 | 0.8216 | 2.7315 | 0.47 | 0.4439 | 0.3582 | 0.2707 |
No log | 13.0 | 325 | 0.0720 | 0.4925 | 0.7913 | 2.6641 | 0.4925 | 0.4606 | 0.3561 | 0.2588 |
No log | 14.0 | 350 | 0.0717 | 0.4725 | 0.7854 | 2.7229 | 0.4725 | 0.4565 | 0.3296 | 0.2732 |
No log | 15.0 | 375 | 0.0708 | 0.5125 | 0.7515 | 2.4866 | 0.5125 | 0.4890 | 0.3445 | 0.2379 |
No log | 16.0 | 400 | 0.0704 | 0.5375 | 0.7424 | 2.4355 | 0.5375 | 0.5131 | 0.3525 | 0.2259 |
No log | 17.0 | 425 | 0.0702 | 0.545 | 0.7259 | 2.5234 | 0.545 | 0.5227 | 0.3427 | 0.2199 |
No log | 18.0 | 450 | 0.0696 | 0.545 | 0.7253 | 2.5796 | 0.545 | 0.5318 | 0.3471 | 0.2118 |
No log | 19.0 | 475 | 0.0697 | 0.56 | 0.7163 | 2.3050 | 0.56 | 0.5547 | 0.3494 | 0.2048 |
0.0745 | 20.0 | 500 | 0.0692 | 0.565 | 0.7044 | 2.4019 | 0.565 | 0.5669 | 0.3598 | 0.1869 |
0.0745 | 21.0 | 525 | 0.0690 | 0.5775 | 0.6983 | 2.3271 | 0.5775 | 0.5805 | 0.3615 | 0.1906 |
0.0745 | 22.0 | 550 | 0.0689 | 0.58 | 0.6855 | 2.2368 | 0.58 | 0.5808 | 0.3572 | 0.1851 |
0.0745 | 23.0 | 575 | 0.0690 | 0.56 | 0.6905 | 2.4557 | 0.56 | 0.5709 | 0.3387 | 0.1925 |
0.0745 | 24.0 | 600 | 0.0688 | 0.57 | 0.6895 | 2.3632 | 0.57 | 0.5736 | 0.3516 | 0.1912 |
0.0745 | 25.0 | 625 | 0.0686 | 0.5775 | 0.6826 | 2.3272 | 0.5775 | 0.5838 | 0.3376 | 0.1802 |
0.0745 | 26.0 | 650 | 0.0689 | 0.5625 | 0.6886 | 2.2696 | 0.5625 | 0.5754 | 0.3445 | 0.1917 |
0.0745 | 27.0 | 675 | 0.0687 | 0.575 | 0.6765 | 2.3387 | 0.575 | 0.5800 | 0.3511 | 0.1861 |
0.0745 | 28.0 | 700 | 0.0689 | 0.5775 | 0.6785 | 2.3039 | 0.5775 | 0.5821 | 0.3546 | 0.1860 |
0.0745 | 29.0 | 725 | 0.0685 | 0.6 | 0.6720 | 2.4176 | 0.6 | 0.6013 | 0.3606 | 0.1750 |
0.0745 | 30.0 | 750 | 0.0685 | 0.5925 | 0.6690 | 2.2827 | 0.5925 | 0.5962 | 0.3646 | 0.1750 |
0.0745 | 31.0 | 775 | 0.0685 | 0.5825 | 0.6682 | 2.2957 | 0.5825 | 0.5885 | 0.3476 | 0.1771 |
0.0745 | 32.0 | 800 | 0.0687 | 0.585 | 0.6700 | 2.2669 | 0.585 | 0.5914 | 0.3428 | 0.1797 |
0.0745 | 33.0 | 825 | 0.0685 | 0.59 | 0.6652 | 2.3359 | 0.59 | 0.5927 | 0.3429 | 0.1775 |
0.0745 | 34.0 | 850 | 0.0686 | 0.5825 | 0.6717 | 2.3900 | 0.5825 | 0.5919 | 0.3453 | 0.1790 |
0.0745 | 35.0 | 875 | 0.0685 | 0.5875 | 0.6721 | 2.3131 | 0.5875 | 0.5932 | 0.3579 | 0.1799 |
0.0745 | 36.0 | 900 | 0.0686 | 0.5925 | 0.6625 | 2.3435 | 0.5925 | 0.6005 | 0.3441 | 0.1728 |
0.0745 | 37.0 | 925 | 0.0685 | 0.5875 | 0.6649 | 2.4475 | 0.5875 | 0.5885 | 0.3550 | 0.1756 |
0.0745 | 38.0 | 950 | 0.0685 | 0.5925 | 0.6607 | 2.2842 | 0.5925 | 0.5962 | 0.3410 | 0.1732 |
0.0745 | 39.0 | 975 | 0.0685 | 0.6 | 0.6605 | 2.2073 | 0.6 | 0.6083 | 0.3414 | 0.1708 |
0.0599 | 40.0 | 1000 | 0.0685 | 0.575 | 0.6578 | 2.3075 | 0.575 | 0.5788 | 0.3341 | 0.1773 |
0.0599 | 41.0 | 1025 | 0.0685 | 0.5975 | 0.6598 | 2.1562 | 0.5975 | 0.6067 | 0.3462 | 0.1685 |
0.0599 | 42.0 | 1050 | 0.0685 | 0.5925 | 0.6592 | 2.3363 | 0.5925 | 0.5999 | 0.3262 | 0.1733 |
0.0599 | 43.0 | 1075 | 0.0683 | 0.5925 | 0.6545 | 2.2970 | 0.5925 | 0.5975 | 0.3413 | 0.1741 |
0.0599 | 44.0 | 1100 | 0.0686 | 0.5975 | 0.6590 | 2.2220 | 0.5975 | 0.6061 | 0.3425 | 0.1698 |
0.0599 | 45.0 | 1125 | 0.0684 | 0.585 | 0.6563 | 2.2507 | 0.585 | 0.5876 | 0.3214 | 0.1795 |
0.0599 | 46.0 | 1150 | 0.0684 | 0.5975 | 0.6578 | 2.2677 | 0.5975 | 0.6082 | 0.3374 | 0.1712 |
0.0599 | 47.0 | 1175 | 0.0684 | 0.5925 | 0.6531 | 2.3091 | 0.5925 | 0.5974 | 0.3362 | 0.1716 |
0.0599 | 48.0 | 1200 | 0.0685 | 0.5825 | 0.6539 | 2.3803 | 0.5825 | 0.5901 | 0.3098 | 0.1790 |
0.0599 | 49.0 | 1225 | 0.0685 | 0.59 | 0.6518 | 2.1855 | 0.59 | 0.6001 | 0.3229 | 0.1759 |
0.0599 | 50.0 | 1250 | 0.0685 | 0.595 | 0.6513 | 2.3357 | 0.595 | 0.6004 | 0.3307 | 0.1711 |
0.0599 | 51.0 | 1275 | 0.0684 | 0.59 | 0.6499 | 2.3253 | 0.59 | 0.5968 | 0.3298 | 0.1708 |
0.0599 | 52.0 | 1300 | 0.0684 | 0.61 | 0.6500 | 2.3352 | 0.61 | 0.6196 | 0.3692 | 0.1687 |
0.0599 | 53.0 | 1325 | 0.0685 | 0.595 | 0.6518 | 2.2189 | 0.595 | 0.6036 | 0.3278 | 0.1735 |
0.0599 | 54.0 | 1350 | 0.0684 | 0.6025 | 0.6501 | 2.3238 | 0.6025 | 0.6114 | 0.3410 | 0.1668 |
0.0599 | 55.0 | 1375 | 0.0684 | 0.595 | 0.6479 | 2.2696 | 0.595 | 0.6022 | 0.3341 | 0.1719 |
0.0599 | 56.0 | 1400 | 0.0685 | 0.595 | 0.6496 | 2.3172 | 0.595 | 0.6008 | 0.3239 | 0.1720 |
0.0599 | 57.0 | 1425 | 0.0684 | 0.595 | 0.6476 | 2.2983 | 0.595 | 0.6023 | 0.3310 | 0.1667 |
0.0599 | 58.0 | 1450 | 0.0684 | 0.605 | 0.6483 | 2.2607 | 0.605 | 0.6140 | 0.3563 | 0.1660 |
0.0599 | 59.0 | 1475 | 0.0685 | 0.5975 | 0.6491 | 2.3956 | 0.5975 | 0.6091 | 0.3222 | 0.1691 |
0.0576 | 60.0 | 1500 | 0.0685 | 0.5925 | 0.6476 | 2.2049 | 0.5925 | 0.6032 | 0.3240 | 0.1716 |
0.0576 | 61.0 | 1525 | 0.0685 | 0.6 | 0.6482 | 2.3095 | 0.6 | 0.6068 | 0.3276 | 0.1703 |
0.0576 | 62.0 | 1550 | 0.0685 | 0.6025 | 0.6448 | 2.2755 | 0.6025 | 0.6101 | 0.3303 | 0.1673 |
0.0576 | 63.0 | 1575 | 0.0685 | 0.6 | 0.6480 | 2.3857 | 0.6 | 0.6078 | 0.3358 | 0.1687 |
0.0576 | 64.0 | 1600 | 0.0685 | 0.59 | 0.6465 | 2.3280 | 0.59 | 0.5990 | 0.3198 | 0.1705 |
0.0576 | 65.0 | 1625 | 0.0684 | 0.605 | 0.6438 | 2.3484 | 0.605 | 0.6125 | 0.3346 | 0.1651 |
0.0576 | 66.0 | 1650 | 0.0686 | 0.6 | 0.6462 | 2.2443 | 0.6 | 0.6084 | 0.3371 | 0.1706 |
0.0576 | 67.0 | 1675 | 0.0685 | 0.6025 | 0.6449 | 2.3717 | 0.6025 | 0.6115 | 0.3317 | 0.1674 |
0.0576 | 68.0 | 1700 | 0.0685 | 0.595 | 0.6449 | 2.3396 | 0.595 | 0.6003 | 0.3292 | 0.1676 |
0.0576 | 69.0 | 1725 | 0.0686 | 0.595 | 0.6460 | 2.3315 | 0.595 | 0.6047 | 0.3339 | 0.1683 |
0.0576 | 70.0 | 1750 | 0.0687 | 0.5975 | 0.6480 | 2.3967 | 0.5975 | 0.6070 | 0.3404 | 0.1702 |
0.0576 | 71.0 | 1775 | 0.0686 | 0.6 | 0.6456 | 2.3870 | 0.6 | 0.6095 | 0.3215 | 0.1689 |
0.0576 | 72.0 | 1800 | 0.0686 | 0.59 | 0.6455 | 2.3966 | 0.59 | 0.5985 | 0.3273 | 0.1691 |
0.0576 | 73.0 | 1825 | 0.0686 | 0.5875 | 0.6472 | 2.3619 | 0.5875 | 0.5975 | 0.3465 | 0.1711 |
0.0576 | 74.0 | 1850 | 0.0686 | 0.595 | 0.6436 | 2.4181 | 0.595 | 0.6054 | 0.3183 | 0.1706 |
0.0576 | 75.0 | 1875 | 0.0686 | 0.6 | 0.6440 | 2.4160 | 0.6 | 0.6077 | 0.3285 | 0.1677 |
0.0576 | 76.0 | 1900 | 0.0687 | 0.6025 | 0.6446 | 2.4184 | 0.6025 | 0.6111 | 0.3408 | 0.1685 |
0.0576 | 77.0 | 1925 | 0.0686 | 0.6025 | 0.6440 | 2.4208 | 0.6025 | 0.6111 | 0.3323 | 0.1670 |
0.0576 | 78.0 | 1950 | 0.0687 | 0.5975 | 0.6438 | 2.4236 | 0.5975 | 0.6063 | 0.3298 | 0.1689 |
0.0576 | 79.0 | 1975 | 0.0687 | 0.5975 | 0.6438 | 2.4521 | 0.5975 | 0.6057 | 0.3328 | 0.1692 |
0.0565 | 80.0 | 2000 | 0.0687 | 0.6 | 0.6448 | 2.4213 | 0.6 | 0.6088 | 0.3368 | 0.1682 |
0.0565 | 81.0 | 2025 | 0.0688 | 0.5975 | 0.6444 | 2.4257 | 0.5975 | 0.6076 | 0.3179 | 0.1681 |
0.0565 | 82.0 | 2050 | 0.0687 | 0.6 | 0.6446 | 2.4225 | 0.6 | 0.6102 | 0.3392 | 0.1673 |
0.0565 | 83.0 | 2075 | 0.0687 | 0.6 | 0.6437 | 2.4571 | 0.6 | 0.6091 | 0.3281 | 0.1681 |
0.0565 | 84.0 | 2100 | 0.0688 | 0.595 | 0.6439 | 2.4360 | 0.595 | 0.6042 | 0.3256 | 0.1685 |
0.0565 | 85.0 | 2125 | 0.0688 | 0.6 | 0.6436 | 2.4396 | 0.6 | 0.6104 | 0.3318 | 0.1683 |
0.0565 | 86.0 | 2150 | 0.0688 | 0.6 | 0.6434 | 2.3977 | 0.6 | 0.6095 | 0.3273 | 0.1675 |
0.0565 | 87.0 | 2175 | 0.0688 | 0.595 | 0.6432 | 2.4303 | 0.595 | 0.6053 | 0.3146 | 0.1687 |
0.0565 | 88.0 | 2200 | 0.0688 | 0.5975 | 0.6431 | 2.4222 | 0.5975 | 0.6071 | 0.3326 | 0.1686 |
0.0565 | 89.0 | 2225 | 0.0688 | 0.6 | 0.6440 | 2.4042 | 0.6 | 0.6108 | 0.3303 | 0.1678 |
0.0565 | 90.0 | 2250 | 0.0688 | 0.6 | 0.6433 | 2.3998 | 0.6 | 0.6096 | 0.3301 | 0.1679 |
0.0565 | 91.0 | 2275 | 0.0689 | 0.6 | 0.6434 | 2.4026 | 0.6 | 0.6108 | 0.3362 | 0.1680 |
0.0565 | 92.0 | 2300 | 0.0689 | 0.5975 | 0.6435 | 2.4037 | 0.5975 | 0.6083 | 0.3335 | 0.1680 |
0.0565 | 93.0 | 2325 | 0.0689 | 0.5975 | 0.6434 | 2.4060 | 0.5975 | 0.6077 | 0.3344 | 0.1679 |
0.0565 | 94.0 | 2350 | 0.0689 | 0.6 | 0.6433 | 2.4024 | 0.6 | 0.6106 | 0.3204 | 0.1683 |
0.0565 | 95.0 | 2375 | 0.0689 | 0.595 | 0.6432 | 2.4060 | 0.595 | 0.6052 | 0.3423 | 0.1684 |
0.0565 | 96.0 | 2400 | 0.0689 | 0.6 | 0.6432 | 2.4044 | 0.6 | 0.6101 | 0.3404 | 0.1684 |
0.0565 | 97.0 | 2425 | 0.0689 | 0.6 | 0.6434 | 2.4042 | 0.6 | 0.6101 | 0.3349 | 0.1683 |
0.0565 | 98.0 | 2450 | 0.0689 | 0.6 | 0.6432 | 2.4055 | 0.6 | 0.6101 | 0.3390 | 0.1684 |
0.0565 | 99.0 | 2475 | 0.0689 | 0.6 | 0.6433 | 2.4056 | 0.6 | 0.6101 | 0.3393 | 0.1685 |
0.056 | 100.0 | 2500 | 0.0689 | 0.6 | 0.6433 | 2.4057 | 0.6 | 0.6101 | 0.3353 | 0.1685 |
Framework versions
- Transformers 4.26.1
- Pytorch 1.13.1.post200
- Datasets 2.9.0
- Tokenizers 0.13.2