<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. -->
vit-small_rvl_cdip_100_examples_per_class_kd_CEKD_t1.5_a0.5
This model is a fine-tuned version of WinKawaks/vit-small-patch16-224 on the None dataset. It achieves the following results on the evaluation set:
- Loss: 1.3067
- Accuracy: 0.64
- Brier Loss: 0.4889
- Nll: 2.7590
- F1 Micro: 0.64
- F1 Macro: 0.6422
- Ece: 0.1482
- Aurc: 0.1465
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 100
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | Brier Loss | Nll | F1 Micro | F1 Macro | Ece | Aurc |
---|---|---|---|---|---|---|---|---|---|---|
No log | 1.0 | 25 | 3.5436 | 0.1275 | 0.9288 | 15.5432 | 0.1275 | 0.1271 | 0.1597 | 0.8570 |
No log | 2.0 | 50 | 2.6686 | 0.4025 | 0.7453 | 9.6119 | 0.4025 | 0.3632 | 0.1957 | 0.3597 |
No log | 3.0 | 75 | 2.0708 | 0.495 | 0.6252 | 5.5129 | 0.495 | 0.4799 | 0.1581 | 0.2478 |
No log | 4.0 | 100 | 1.8472 | 0.5475 | 0.5792 | 4.3917 | 0.5475 | 0.5504 | 0.1665 | 0.2138 |
No log | 5.0 | 125 | 1.8657 | 0.535 | 0.6173 | 4.2639 | 0.535 | 0.5241 | 0.1890 | 0.2311 |
No log | 6.0 | 150 | 1.7791 | 0.5725 | 0.5777 | 3.7697 | 0.5725 | 0.5672 | 0.1634 | 0.2157 |
No log | 7.0 | 175 | 1.7957 | 0.555 | 0.5997 | 4.3973 | 0.555 | 0.5219 | 0.1885 | 0.2118 |
No log | 8.0 | 200 | 1.7306 | 0.56 | 0.5858 | 4.3403 | 0.56 | 0.5499 | 0.1808 | 0.2076 |
No log | 9.0 | 225 | 1.9129 | 0.55 | 0.6072 | 5.3639 | 0.55 | 0.5253 | 0.2106 | 0.2034 |
No log | 10.0 | 250 | 1.9057 | 0.565 | 0.6050 | 4.7359 | 0.565 | 0.5514 | 0.2051 | 0.2211 |
No log | 11.0 | 275 | 1.8169 | 0.5825 | 0.5990 | 4.2043 | 0.5825 | 0.5787 | 0.2048 | 0.2099 |
No log | 12.0 | 300 | 1.9194 | 0.55 | 0.6387 | 3.9608 | 0.55 | 0.5457 | 0.2246 | 0.2475 |
No log | 13.0 | 325 | 1.7830 | 0.585 | 0.5961 | 3.9468 | 0.585 | 0.5717 | 0.1971 | 0.2235 |
No log | 14.0 | 350 | 1.8241 | 0.5575 | 0.6112 | 3.6498 | 0.5575 | 0.5554 | 0.2123 | 0.2116 |
No log | 15.0 | 375 | 1.8344 | 0.58 | 0.5950 | 3.9880 | 0.58 | 0.5741 | 0.1872 | 0.2168 |
No log | 16.0 | 400 | 1.8909 | 0.57 | 0.5987 | 4.6112 | 0.57 | 0.5596 | 0.2096 | 0.2100 |
No log | 17.0 | 425 | 1.6662 | 0.585 | 0.5645 | 4.0403 | 0.585 | 0.5752 | 0.2000 | 0.1872 |
No log | 18.0 | 450 | 1.5986 | 0.6175 | 0.5315 | 3.8888 | 0.6175 | 0.6162 | 0.1724 | 0.1660 |
No log | 19.0 | 475 | 1.5392 | 0.5925 | 0.5593 | 2.8593 | 0.5925 | 0.5823 | 0.2056 | 0.1777 |
0.718 | 20.0 | 500 | 1.5257 | 0.595 | 0.5386 | 3.5024 | 0.595 | 0.5817 | 0.1909 | 0.1680 |
0.718 | 21.0 | 525 | 1.6699 | 0.6125 | 0.5570 | 3.9342 | 0.6125 | 0.6121 | 0.2006 | 0.1898 |
0.718 | 22.0 | 550 | 1.5804 | 0.605 | 0.5542 | 3.7562 | 0.605 | 0.5828 | 0.1888 | 0.1826 |
0.718 | 23.0 | 575 | 1.5580 | 0.6025 | 0.5407 | 3.4731 | 0.6025 | 0.5877 | 0.1780 | 0.1693 |
0.718 | 24.0 | 600 | 1.5693 | 0.58 | 0.5717 | 3.1009 | 0.58 | 0.5830 | 0.1954 | 0.2041 |
0.718 | 25.0 | 625 | 1.6368 | 0.57 | 0.5826 | 3.7067 | 0.57 | 0.5684 | 0.2027 | 0.2116 |
0.718 | 26.0 | 650 | 1.3959 | 0.635 | 0.5018 | 3.1312 | 0.635 | 0.6342 | 0.1814 | 0.1544 |
0.718 | 27.0 | 675 | 1.4555 | 0.635 | 0.5130 | 3.1374 | 0.635 | 0.6344 | 0.1733 | 0.1727 |
0.718 | 28.0 | 700 | 1.5010 | 0.605 | 0.5361 | 3.6647 | 0.605 | 0.6030 | 0.1811 | 0.1725 |
0.718 | 29.0 | 725 | 1.6266 | 0.585 | 0.5777 | 3.1233 | 0.585 | 0.5757 | 0.1955 | 0.1965 |
0.718 | 30.0 | 750 | 1.4467 | 0.635 | 0.5196 | 3.3019 | 0.635 | 0.6371 | 0.1856 | 0.1759 |
0.718 | 31.0 | 775 | 1.5051 | 0.6 | 0.5439 | 3.5968 | 0.6 | 0.5950 | 0.2020 | 0.1776 |
0.718 | 32.0 | 800 | 1.3890 | 0.6325 | 0.5001 | 3.2391 | 0.6325 | 0.6310 | 0.1639 | 0.1502 |
0.718 | 33.0 | 825 | 1.4150 | 0.6075 | 0.5208 | 3.4287 | 0.6075 | 0.6102 | 0.1862 | 0.1667 |
0.718 | 34.0 | 850 | 1.3743 | 0.6125 | 0.5133 | 3.0028 | 0.6125 | 0.6123 | 0.1927 | 0.1585 |
0.718 | 35.0 | 875 | 1.3564 | 0.6325 | 0.4960 | 2.8056 | 0.6325 | 0.6344 | 0.1624 | 0.1490 |
0.718 | 36.0 | 900 | 1.3634 | 0.6325 | 0.5005 | 2.5056 | 0.6325 | 0.6352 | 0.1808 | 0.1513 |
0.718 | 37.0 | 925 | 1.3707 | 0.62 | 0.4991 | 3.2196 | 0.62 | 0.6209 | 0.1509 | 0.1530 |
0.718 | 38.0 | 950 | 1.3311 | 0.635 | 0.4937 | 2.8078 | 0.635 | 0.6383 | 0.1645 | 0.1478 |
0.718 | 39.0 | 975 | 1.2896 | 0.635 | 0.4838 | 2.7910 | 0.635 | 0.6319 | 0.1524 | 0.1420 |
0.0894 | 40.0 | 1000 | 1.3209 | 0.65 | 0.4935 | 2.7909 | 0.65 | 0.6523 | 0.1674 | 0.1442 |
0.0894 | 41.0 | 1025 | 1.3280 | 0.6525 | 0.4903 | 2.9461 | 0.6525 | 0.6536 | 0.1645 | 0.1457 |
0.0894 | 42.0 | 1050 | 1.3220 | 0.65 | 0.4893 | 2.9579 | 0.65 | 0.6505 | 0.1577 | 0.1480 |
0.0894 | 43.0 | 1075 | 1.3155 | 0.6425 | 0.4912 | 2.8699 | 0.6425 | 0.6465 | 0.1479 | 0.1461 |
0.0894 | 44.0 | 1100 | 1.3243 | 0.6375 | 0.4946 | 2.9297 | 0.6375 | 0.6393 | 0.1624 | 0.1494 |
0.0894 | 45.0 | 1125 | 1.3123 | 0.645 | 0.4891 | 2.8813 | 0.645 | 0.6464 | 0.1710 | 0.1443 |
0.0894 | 46.0 | 1150 | 1.3051 | 0.6425 | 0.4859 | 2.8460 | 0.6425 | 0.6434 | 0.1570 | 0.1431 |
0.0894 | 47.0 | 1175 | 1.3082 | 0.645 | 0.4871 | 2.7740 | 0.645 | 0.6460 | 0.1740 | 0.1449 |
0.0894 | 48.0 | 1200 | 1.3026 | 0.6475 | 0.4849 | 2.7773 | 0.6475 | 0.6505 | 0.1800 | 0.1440 |
0.0894 | 49.0 | 1225 | 1.3141 | 0.6375 | 0.4895 | 2.7660 | 0.6375 | 0.6396 | 0.1737 | 0.1463 |
0.0894 | 50.0 | 1250 | 1.3147 | 0.6325 | 0.4879 | 2.7744 | 0.6325 | 0.6351 | 0.1609 | 0.1450 |
0.0894 | 51.0 | 1275 | 1.3080 | 0.64 | 0.4883 | 2.7668 | 0.64 | 0.6423 | 0.1636 | 0.1450 |
0.0894 | 52.0 | 1300 | 1.3087 | 0.6425 | 0.4890 | 2.8436 | 0.6425 | 0.6448 | 0.1520 | 0.1462 |
0.0894 | 53.0 | 1325 | 1.3101 | 0.64 | 0.4888 | 2.7708 | 0.64 | 0.6415 | 0.1602 | 0.1452 |
0.0894 | 54.0 | 1350 | 1.3181 | 0.6425 | 0.4927 | 2.8450 | 0.6425 | 0.6446 | 0.1732 | 0.1490 |
0.0894 | 55.0 | 1375 | 1.3144 | 0.6375 | 0.4915 | 2.7718 | 0.6375 | 0.6399 | 0.1542 | 0.1473 |
0.0894 | 56.0 | 1400 | 1.3138 | 0.645 | 0.4923 | 2.6836 | 0.645 | 0.6476 | 0.1721 | 0.1471 |
0.0894 | 57.0 | 1425 | 1.3156 | 0.645 | 0.4920 | 2.7653 | 0.645 | 0.6468 | 0.1642 | 0.1470 |
0.0894 | 58.0 | 1450 | 1.3161 | 0.6425 | 0.4919 | 2.7644 | 0.6425 | 0.6450 | 0.1617 | 0.1472 |
0.0894 | 59.0 | 1475 | 1.3069 | 0.6375 | 0.4877 | 2.7658 | 0.6375 | 0.6396 | 0.1635 | 0.1455 |
0.0506 | 60.0 | 1500 | 1.3109 | 0.645 | 0.4904 | 2.8426 | 0.645 | 0.6464 | 0.1605 | 0.1467 |
0.0506 | 61.0 | 1525 | 1.3111 | 0.6425 | 0.4893 | 2.7618 | 0.6425 | 0.6446 | 0.1704 | 0.1461 |
0.0506 | 62.0 | 1550 | 1.3053 | 0.6425 | 0.4884 | 2.7648 | 0.6425 | 0.6449 | 0.1602 | 0.1457 |
0.0506 | 63.0 | 1575 | 1.3097 | 0.64 | 0.4887 | 2.7618 | 0.64 | 0.6423 | 0.1632 | 0.1463 |
0.0506 | 64.0 | 1600 | 1.3106 | 0.645 | 0.4912 | 2.7681 | 0.645 | 0.6473 | 0.1688 | 0.1469 |
0.0506 | 65.0 | 1625 | 1.3095 | 0.64 | 0.4902 | 2.7589 | 0.64 | 0.6419 | 0.1560 | 0.1468 |
0.0506 | 66.0 | 1650 | 1.3073 | 0.645 | 0.4895 | 2.7642 | 0.645 | 0.6473 | 0.1800 | 0.1463 |
0.0506 | 67.0 | 1675 | 1.3041 | 0.64 | 0.4880 | 2.7619 | 0.64 | 0.6424 | 0.1670 | 0.1454 |
0.0506 | 68.0 | 1700 | 1.3062 | 0.64 | 0.4887 | 2.7623 | 0.64 | 0.6423 | 0.1671 | 0.1466 |
0.0506 | 69.0 | 1725 | 1.3075 | 0.64 | 0.4888 | 2.7628 | 0.64 | 0.6424 | 0.1533 | 0.1459 |
0.0506 | 70.0 | 1750 | 1.3089 | 0.64 | 0.4898 | 2.7607 | 0.64 | 0.6425 | 0.1805 | 0.1466 |
0.0506 | 71.0 | 1775 | 1.3068 | 0.64 | 0.4889 | 2.7600 | 0.64 | 0.6424 | 0.1592 | 0.1458 |
0.0506 | 72.0 | 1800 | 1.3076 | 0.6425 | 0.4894 | 2.7599 | 0.6425 | 0.6451 | 0.1766 | 0.1461 |
0.0506 | 73.0 | 1825 | 1.3071 | 0.6425 | 0.4890 | 2.7609 | 0.6425 | 0.6451 | 0.1538 | 0.1460 |
0.0506 | 74.0 | 1850 | 1.3062 | 0.64 | 0.4887 | 2.7601 | 0.64 | 0.6422 | 0.1678 | 0.1461 |
0.0506 | 75.0 | 1875 | 1.3076 | 0.6425 | 0.4891 | 2.7598 | 0.6425 | 0.6451 | 0.1660 | 0.1461 |
0.0506 | 76.0 | 1900 | 1.3067 | 0.6425 | 0.4890 | 2.7607 | 0.6425 | 0.6450 | 0.1510 | 0.1461 |
0.0506 | 77.0 | 1925 | 1.3073 | 0.6425 | 0.4891 | 2.7596 | 0.6425 | 0.6451 | 0.1558 | 0.1461 |
0.0506 | 78.0 | 1950 | 1.3075 | 0.6425 | 0.4894 | 2.7612 | 0.6425 | 0.6451 | 0.1604 | 0.1461 |
0.0506 | 79.0 | 1975 | 1.3071 | 0.6425 | 0.4889 | 2.7602 | 0.6425 | 0.6452 | 0.1575 | 0.1460 |
0.0486 | 80.0 | 2000 | 1.3065 | 0.6425 | 0.4889 | 2.7599 | 0.6425 | 0.6450 | 0.1451 | 0.1461 |
0.0486 | 81.0 | 2025 | 1.3066 | 0.6425 | 0.4889 | 2.7594 | 0.6425 | 0.6451 | 0.1532 | 0.1460 |
0.0486 | 82.0 | 2050 | 1.3069 | 0.64 | 0.4891 | 2.7599 | 0.64 | 0.6424 | 0.1468 | 0.1463 |
0.0486 | 83.0 | 2075 | 1.3068 | 0.64 | 0.4889 | 2.7599 | 0.64 | 0.6422 | 0.1551 | 0.1466 |
0.0486 | 84.0 | 2100 | 1.3067 | 0.64 | 0.4889 | 2.7592 | 0.64 | 0.6424 | 0.1445 | 0.1463 |
0.0486 | 85.0 | 2125 | 1.3065 | 0.64 | 0.4889 | 2.7591 | 0.64 | 0.6422 | 0.1506 | 0.1465 |
0.0486 | 86.0 | 2150 | 1.3067 | 0.64 | 0.4889 | 2.7589 | 0.64 | 0.6422 | 0.1637 | 0.1465 |
0.0486 | 87.0 | 2175 | 1.3069 | 0.64 | 0.4889 | 2.7592 | 0.64 | 0.6422 | 0.1530 | 0.1465 |
0.0486 | 88.0 | 2200 | 1.3069 | 0.64 | 0.4890 | 2.7591 | 0.64 | 0.6422 | 0.1503 | 0.1465 |
0.0486 | 89.0 | 2225 | 1.3067 | 0.64 | 0.4889 | 2.7592 | 0.64 | 0.6422 | 0.1547 | 0.1464 |
0.0486 | 90.0 | 2250 | 1.3069 | 0.64 | 0.4890 | 2.7592 | 0.64 | 0.6422 | 0.1477 | 0.1465 |
0.0486 | 91.0 | 2275 | 1.3067 | 0.64 | 0.4889 | 2.7590 | 0.64 | 0.6422 | 0.1508 | 0.1465 |
0.0486 | 92.0 | 2300 | 1.3066 | 0.64 | 0.4888 | 2.7591 | 0.64 | 0.6422 | 0.1484 | 0.1464 |
0.0486 | 93.0 | 2325 | 1.3068 | 0.64 | 0.4889 | 2.7588 | 0.64 | 0.6422 | 0.1485 | 0.1465 |
0.0486 | 94.0 | 2350 | 1.3067 | 0.64 | 0.4889 | 2.7590 | 0.64 | 0.6422 | 0.1482 | 0.1465 |
0.0486 | 95.0 | 2375 | 1.3068 | 0.64 | 0.4889 | 2.7589 | 0.64 | 0.6422 | 0.1482 | 0.1465 |
0.0486 | 96.0 | 2400 | 1.3067 | 0.64 | 0.4889 | 2.7589 | 0.64 | 0.6422 | 0.1482 | 0.1464 |
0.0486 | 97.0 | 2425 | 1.3068 | 0.64 | 0.4889 | 2.7590 | 0.64 | 0.6422 | 0.1482 | 0.1465 |
0.0486 | 98.0 | 2450 | 1.3067 | 0.64 | 0.4889 | 2.7589 | 0.64 | 0.6422 | 0.1482 | 0.1464 |
0.0486 | 99.0 | 2475 | 1.3067 | 0.64 | 0.4889 | 2.7589 | 0.64 | 0.6422 | 0.1482 | 0.1465 |
0.0484 | 100.0 | 2500 | 1.3067 | 0.64 | 0.4889 | 2.7590 | 0.64 | 0.6422 | 0.1482 | 0.1465 |
Framework versions
- Transformers 4.28.0.dev0
- Pytorch 1.12.1+cu113
- Datasets 2.12.0
- Tokenizers 0.12.1