<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. -->
vit-small_tobacco3482_simkd_CEKD_tNone_aNone_tNone_gNone
This model is a fine-tuned version of WinKawaks/vit-small-patch16-224 on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.0379
- Accuracy: 0.8
- Brier Loss: 0.6938
- Nll: 1.3290
- F1 Micro: 0.8000
- F1 Macro: 0.7859
- Ece: 0.5869
- Aurc: 0.0931
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 100
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | Brier Loss | Nll | F1 Micro | F1 Macro | Ece | Aurc |
---|---|---|---|---|---|---|---|---|---|---|
No log | 1.0 | 25 | 0.0506 | 0.09 | 0.8991 | 6.5155 | 0.09 | 0.0484 | 0.1622 | 0.8986 |
No log | 2.0 | 50 | 0.0468 | 0.22 | 0.8982 | 4.6950 | 0.22 | 0.1025 | 0.2491 | 0.7656 |
No log | 3.0 | 75 | 0.0463 | 0.29 | 0.8969 | 3.3099 | 0.29 | 0.1676 | 0.2924 | 0.6888 |
No log | 4.0 | 100 | 0.0459 | 0.37 | 0.8954 | 3.2920 | 0.37 | 0.1891 | 0.3517 | 0.4208 |
No log | 5.0 | 125 | 0.0455 | 0.395 | 0.8929 | 3.2550 | 0.395 | 0.2299 | 0.3759 | 0.3617 |
No log | 6.0 | 150 | 0.0449 | 0.49 | 0.8885 | 2.9109 | 0.49 | 0.3135 | 0.4396 | 0.2804 |
No log | 7.0 | 175 | 0.0441 | 0.495 | 0.8796 | 2.8950 | 0.495 | 0.3248 | 0.4360 | 0.2721 |
No log | 8.0 | 200 | 0.0430 | 0.545 | 0.8619 | 2.5199 | 0.545 | 0.3771 | 0.4777 | 0.2129 |
No log | 9.0 | 225 | 0.0418 | 0.62 | 0.8382 | 2.2126 | 0.62 | 0.4291 | 0.5298 | 0.1659 |
No log | 10.0 | 250 | 0.0409 | 0.645 | 0.8137 | 2.2525 | 0.645 | 0.4947 | 0.5293 | 0.1552 |
No log | 11.0 | 275 | 0.0401 | 0.68 | 0.7863 | 2.4423 | 0.68 | 0.5145 | 0.5433 | 0.1215 |
No log | 12.0 | 300 | 0.0392 | 0.68 | 0.7628 | 1.9779 | 0.68 | 0.5373 | 0.5402 | 0.1172 |
No log | 13.0 | 325 | 0.0385 | 0.745 | 0.7350 | 1.8986 | 0.745 | 0.6126 | 0.5806 | 0.0843 |
No log | 14.0 | 350 | 0.0384 | 0.735 | 0.7268 | 1.9922 | 0.735 | 0.6451 | 0.5466 | 0.0997 |
No log | 15.0 | 375 | 0.0381 | 0.745 | 0.7180 | 1.6965 | 0.745 | 0.6627 | 0.5586 | 0.0761 |
No log | 16.0 | 400 | 0.0377 | 0.805 | 0.7031 | 1.2564 | 0.805 | 0.7353 | 0.6034 | 0.0713 |
No log | 17.0 | 425 | 0.0389 | 0.745 | 0.7303 | 1.5063 | 0.745 | 0.7192 | 0.5779 | 0.0705 |
No log | 18.0 | 450 | 0.0387 | 0.765 | 0.7219 | 1.5776 | 0.765 | 0.7703 | 0.5815 | 0.0923 |
No log | 19.0 | 475 | 0.0383 | 0.805 | 0.7213 | 1.3953 | 0.805 | 0.7906 | 0.6159 | 0.0667 |
0.0432 | 20.0 | 500 | 0.0377 | 0.835 | 0.6952 | 1.3075 | 0.835 | 0.8271 | 0.6116 | 0.0799 |
0.0432 | 21.0 | 525 | 0.0381 | 0.795 | 0.7018 | 1.6184 | 0.795 | 0.7723 | 0.5851 | 0.0880 |
0.0432 | 22.0 | 550 | 0.0378 | 0.81 | 0.6984 | 1.4292 | 0.81 | 0.7950 | 0.6103 | 0.0673 |
0.0432 | 23.0 | 575 | 0.0380 | 0.805 | 0.6976 | 1.4852 | 0.805 | 0.7951 | 0.5942 | 0.0808 |
0.0432 | 24.0 | 600 | 0.0377 | 0.825 | 0.6907 | 1.4501 | 0.825 | 0.8103 | 0.6020 | 0.0774 |
0.0432 | 25.0 | 625 | 0.0377 | 0.83 | 0.6920 | 1.4509 | 0.83 | 0.8148 | 0.6038 | 0.0759 |
0.0432 | 26.0 | 650 | 0.0377 | 0.825 | 0.6927 | 1.4113 | 0.825 | 0.8114 | 0.6072 | 0.0765 |
0.0432 | 27.0 | 675 | 0.0377 | 0.825 | 0.6924 | 1.4044 | 0.825 | 0.8114 | 0.6057 | 0.0757 |
0.0432 | 28.0 | 700 | 0.0377 | 0.82 | 0.6932 | 1.4521 | 0.82 | 0.8061 | 0.6017 | 0.0815 |
0.0432 | 29.0 | 725 | 0.0377 | 0.82 | 0.6932 | 1.3593 | 0.82 | 0.8080 | 0.5983 | 0.0794 |
0.0432 | 30.0 | 750 | 0.0377 | 0.82 | 0.6926 | 1.3437 | 0.82 | 0.8069 | 0.6042 | 0.0819 |
0.0432 | 31.0 | 775 | 0.0377 | 0.815 | 0.6932 | 1.3453 | 0.815 | 0.8027 | 0.5988 | 0.0815 |
0.0432 | 32.0 | 800 | 0.0377 | 0.82 | 0.6930 | 1.3384 | 0.82 | 0.8029 | 0.6044 | 0.0855 |
0.0432 | 33.0 | 825 | 0.0377 | 0.81 | 0.6928 | 1.3969 | 0.81 | 0.7927 | 0.5929 | 0.0835 |
0.0432 | 34.0 | 850 | 0.0378 | 0.805 | 0.6927 | 1.3995 | 0.805 | 0.7886 | 0.5961 | 0.0855 |
0.0432 | 35.0 | 875 | 0.0377 | 0.81 | 0.6927 | 1.3705 | 0.81 | 0.7979 | 0.5910 | 0.0887 |
0.0432 | 36.0 | 900 | 0.0378 | 0.805 | 0.6930 | 1.3566 | 0.805 | 0.7886 | 0.5850 | 0.0817 |
0.0432 | 37.0 | 925 | 0.0377 | 0.82 | 0.6927 | 1.3537 | 0.82 | 0.8022 | 0.5936 | 0.0847 |
0.0432 | 38.0 | 950 | 0.0377 | 0.815 | 0.6930 | 1.3574 | 0.815 | 0.7978 | 0.5976 | 0.0854 |
0.0432 | 39.0 | 975 | 0.0377 | 0.815 | 0.6932 | 1.4599 | 0.815 | 0.7978 | 0.5955 | 0.0864 |
0.035 | 40.0 | 1000 | 0.0377 | 0.815 | 0.6926 | 1.4147 | 0.815 | 0.7978 | 0.5990 | 0.0869 |
0.035 | 41.0 | 1025 | 0.0377 | 0.81 | 0.6931 | 1.4065 | 0.81 | 0.7943 | 0.5966 | 0.0844 |
0.035 | 42.0 | 1050 | 0.0378 | 0.81 | 0.6929 | 1.4678 | 0.81 | 0.7961 | 0.5902 | 0.0891 |
0.035 | 43.0 | 1075 | 0.0378 | 0.81 | 0.6927 | 1.4164 | 0.81 | 0.7971 | 0.5951 | 0.0897 |
0.035 | 44.0 | 1100 | 0.0378 | 0.81 | 0.6930 | 1.4646 | 0.81 | 0.7961 | 0.5948 | 0.0875 |
0.035 | 45.0 | 1125 | 0.0378 | 0.815 | 0.6921 | 1.4660 | 0.815 | 0.8004 | 0.6024 | 0.0895 |
0.035 | 46.0 | 1150 | 0.0378 | 0.81 | 0.6929 | 1.4098 | 0.81 | 0.7961 | 0.5987 | 0.0831 |
0.035 | 47.0 | 1175 | 0.0378 | 0.815 | 0.6928 | 1.4634 | 0.815 | 0.8004 | 0.5963 | 0.0911 |
0.035 | 48.0 | 1200 | 0.0378 | 0.81 | 0.6932 | 1.4648 | 0.81 | 0.7961 | 0.5841 | 0.0877 |
0.035 | 49.0 | 1225 | 0.0378 | 0.81 | 0.6928 | 1.4635 | 0.81 | 0.7961 | 0.5955 | 0.0898 |
0.035 | 50.0 | 1250 | 0.0378 | 0.805 | 0.6935 | 1.4688 | 0.805 | 0.7882 | 0.5795 | 0.0902 |
0.035 | 51.0 | 1275 | 0.0378 | 0.805 | 0.6928 | 1.4665 | 0.805 | 0.7882 | 0.5848 | 0.0916 |
0.035 | 52.0 | 1300 | 0.0378 | 0.81 | 0.6925 | 1.4249 | 0.81 | 0.7961 | 0.5869 | 0.0926 |
0.035 | 53.0 | 1325 | 0.0378 | 0.815 | 0.6926 | 1.4150 | 0.815 | 0.8021 | 0.5934 | 0.0913 |
0.035 | 54.0 | 1350 | 0.0378 | 0.81 | 0.6929 | 1.4155 | 0.81 | 0.7961 | 0.5943 | 0.0913 |
0.035 | 55.0 | 1375 | 0.0378 | 0.805 | 0.6928 | 1.4141 | 0.805 | 0.7882 | 0.5934 | 0.0964 |
0.035 | 56.0 | 1400 | 0.0378 | 0.805 | 0.6930 | 1.4124 | 0.805 | 0.7882 | 0.5926 | 0.0958 |
0.035 | 57.0 | 1425 | 0.0378 | 0.81 | 0.6935 | 1.4116 | 0.81 | 0.7934 | 0.6002 | 0.0895 |
0.035 | 58.0 | 1450 | 0.0378 | 0.805 | 0.6928 | 1.4059 | 0.805 | 0.7882 | 0.5890 | 0.0937 |
0.035 | 59.0 | 1475 | 0.0378 | 0.805 | 0.6929 | 1.4141 | 0.805 | 0.7882 | 0.5918 | 0.0967 |
0.0348 | 60.0 | 1500 | 0.0378 | 0.81 | 0.6935 | 1.4086 | 0.81 | 0.7934 | 0.5915 | 0.0934 |
0.0348 | 61.0 | 1525 | 0.0378 | 0.81 | 0.6930 | 1.4105 | 0.81 | 0.7941 | 0.5954 | 0.0961 |
0.0348 | 62.0 | 1550 | 0.0378 | 0.81 | 0.6933 | 1.4166 | 0.81 | 0.7941 | 0.5889 | 0.0954 |
0.0348 | 63.0 | 1575 | 0.0378 | 0.81 | 0.6933 | 1.4109 | 0.81 | 0.7934 | 0.5963 | 0.0975 |
0.0348 | 64.0 | 1600 | 0.0378 | 0.81 | 0.6932 | 1.4131 | 0.81 | 0.7934 | 0.5980 | 0.0953 |
0.0348 | 65.0 | 1625 | 0.0378 | 0.81 | 0.6937 | 1.4182 | 0.81 | 0.7934 | 0.5956 | 0.0970 |
0.0348 | 66.0 | 1650 | 0.0378 | 0.805 | 0.6933 | 1.4125 | 0.805 | 0.7893 | 0.5905 | 0.0966 |
0.0348 | 67.0 | 1675 | 0.0378 | 0.81 | 0.6937 | 1.4136 | 0.81 | 0.7934 | 0.5965 | 0.0975 |
0.0348 | 68.0 | 1700 | 0.0379 | 0.81 | 0.6935 | 1.4137 | 0.81 | 0.7934 | 0.5994 | 0.0971 |
0.0348 | 69.0 | 1725 | 0.0378 | 0.805 | 0.6935 | 1.4196 | 0.805 | 0.7893 | 0.5913 | 0.0946 |
0.0348 | 70.0 | 1750 | 0.0379 | 0.805 | 0.6933 | 1.4129 | 0.805 | 0.7893 | 0.5877 | 0.0945 |
0.0348 | 71.0 | 1775 | 0.0379 | 0.805 | 0.6933 | 1.4172 | 0.805 | 0.7893 | 0.5921 | 0.0951 |
0.0348 | 72.0 | 1800 | 0.0379 | 0.805 | 0.6931 | 1.4136 | 0.805 | 0.7893 | 0.5851 | 0.0953 |
0.0348 | 73.0 | 1825 | 0.0379 | 0.805 | 0.6929 | 1.4168 | 0.805 | 0.7893 | 0.5846 | 0.0971 |
0.0348 | 74.0 | 1850 | 0.0379 | 0.805 | 0.6939 | 1.4185 | 0.805 | 0.7893 | 0.5892 | 0.0950 |
0.0348 | 75.0 | 1875 | 0.0379 | 0.805 | 0.6935 | 1.4171 | 0.805 | 0.7893 | 0.5946 | 0.0938 |
0.0348 | 76.0 | 1900 | 0.0379 | 0.805 | 0.6934 | 1.4217 | 0.805 | 0.7893 | 0.5939 | 0.0959 |
0.0348 | 77.0 | 1925 | 0.0379 | 0.8 | 0.6932 | 1.4162 | 0.8000 | 0.7859 | 0.5826 | 0.0954 |
0.0348 | 78.0 | 1950 | 0.0379 | 0.8 | 0.6935 | 1.4172 | 0.8000 | 0.7859 | 0.5912 | 0.0950 |
0.0348 | 79.0 | 1975 | 0.0379 | 0.8 | 0.6933 | 1.4169 | 0.8000 | 0.7859 | 0.5885 | 0.0964 |
0.0348 | 80.0 | 2000 | 0.0379 | 0.8 | 0.6935 | 1.4196 | 0.8000 | 0.7859 | 0.5865 | 0.0957 |
0.0348 | 81.0 | 2025 | 0.0379 | 0.8 | 0.6937 | 1.4213 | 0.8000 | 0.7859 | 0.5880 | 0.0962 |
0.0348 | 82.0 | 2050 | 0.0379 | 0.8 | 0.6939 | 1.4201 | 0.8000 | 0.7859 | 0.5910 | 0.0962 |
0.0348 | 83.0 | 2075 | 0.0379 | 0.8 | 0.6938 | 1.3762 | 0.8000 | 0.7859 | 0.5883 | 0.0945 |
0.0348 | 84.0 | 2100 | 0.0379 | 0.8 | 0.6938 | 1.4218 | 0.8000 | 0.7859 | 0.5947 | 0.0950 |
0.0348 | 85.0 | 2125 | 0.0379 | 0.8 | 0.6935 | 1.3657 | 0.8000 | 0.7859 | 0.5857 | 0.0912 |
0.0348 | 86.0 | 2150 | 0.0379 | 0.8 | 0.6938 | 1.3278 | 0.8000 | 0.7859 | 0.5892 | 0.0929 |
0.0348 | 87.0 | 2175 | 0.0379 | 0.8 | 0.6938 | 1.3831 | 0.8000 | 0.7859 | 0.5856 | 0.0946 |
0.0348 | 88.0 | 2200 | 0.0379 | 0.8 | 0.6938 | 1.3761 | 0.8000 | 0.7859 | 0.5892 | 0.0955 |
0.0348 | 89.0 | 2225 | 0.0379 | 0.8 | 0.6938 | 1.3296 | 0.8000 | 0.7859 | 0.5870 | 0.0947 |
0.0348 | 90.0 | 2250 | 0.0379 | 0.8 | 0.6939 | 1.3667 | 0.8000 | 0.7859 | 0.5909 | 0.0926 |
0.0348 | 91.0 | 2275 | 0.0379 | 0.8 | 0.6940 | 1.3346 | 0.8000 | 0.7859 | 0.5906 | 0.0930 |
0.0348 | 92.0 | 2300 | 0.0379 | 0.8 | 0.6938 | 1.3268 | 0.8000 | 0.7859 | 0.5870 | 0.0936 |
0.0348 | 93.0 | 2325 | 0.0379 | 0.8 | 0.6937 | 1.3320 | 0.8000 | 0.7859 | 0.5919 | 0.0939 |
0.0348 | 94.0 | 2350 | 0.0379 | 0.8 | 0.6939 | 1.3324 | 0.8000 | 0.7859 | 0.5870 | 0.0928 |
0.0348 | 95.0 | 2375 | 0.0379 | 0.8 | 0.6937 | 1.3289 | 0.8000 | 0.7859 | 0.5869 | 0.0932 |
0.0348 | 96.0 | 2400 | 0.0379 | 0.8 | 0.6938 | 1.3264 | 0.8000 | 0.7859 | 0.5869 | 0.0931 |
0.0348 | 97.0 | 2425 | 0.0379 | 0.8 | 0.6938 | 1.3280 | 0.8000 | 0.7859 | 0.5870 | 0.0932 |
0.0348 | 98.0 | 2450 | 0.0379 | 0.8 | 0.6938 | 1.3297 | 0.8000 | 0.7859 | 0.5869 | 0.0930 |
0.0348 | 99.0 | 2475 | 0.0379 | 0.8 | 0.6938 | 1.3304 | 0.8000 | 0.7859 | 0.5869 | 0.0929 |
0.0347 | 100.0 | 2500 | 0.0379 | 0.8 | 0.6938 | 1.3290 | 0.8000 | 0.7859 | 0.5869 | 0.0931 |
Framework versions
- Transformers 4.26.1
- Pytorch 1.13.1.post200
- Datasets 2.9.0
- Tokenizers 0.13.2