generated_from_trainer

<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. -->

source-affiliation-model

This model is a fine-tuned version of roberta-base on an unknown dataset. It achieves the following results on the evaluation set:

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

Training results

Training Loss Epoch Step Validation Loss F1
No log 0.12 100 1.4535 0.2435
No log 0.25 200 1.3128 0.3899
No log 0.37 300 1.2888 0.4413
No log 0.49 400 1.1560 0.4614
1.4848 0.62 500 1.0988 0.4477
1.4848 0.74 600 1.1211 0.4583
1.4848 0.86 700 1.1152 0.4693
1.4848 0.99 800 1.0176 0.5018
1.4848 1.11 900 1.0942 0.4774
1.1019 1.23 1000 1.1785 0.5119
1.1019 1.35 1100 1.0751 0.4797
1.1019 1.48 1200 1.0759 0.5206
1.1019 1.6 1300 1.0756 0.5231
1.1019 1.72 1400 1.1329 0.4547
0.9431 1.85 1500 1.0617 0.4852
0.9431 1.97 1600 1.1046 0.5254
0.9431 2.09 1700 1.2489 0.5069
0.9431 2.22 1800 1.2113 0.5363
0.9431 2.34 1900 1.1782 0.5546
0.7589 2.46 2000 1.0453 0.5862
0.7589 2.59 2100 1.0810 0.5223
0.7589 2.71 2200 1.1470 0.5872
0.7589 2.83 2300 1.1522 0.5553
0.7589 2.96 2400 1.0712 0.6273
0.6875 3.08 2500 1.3458 0.5768
0.6875 3.2 2600 1.7052 0.5491
0.6875 3.33 2700 1.5080 0.6582
0.6875 3.45 2800 1.5851 0.5965
0.6875 3.57 2900 1.4771 0.5691
0.5391 3.69 3000 1.6717 0.5350
0.5391 3.82 3100 1.5607 0.5448
0.5391 3.94 3200 1.5464 0.6062
0.5391 4.06 3300 1.7645 0.5755
0.5391 4.19 3400 1.6715 0.5504
0.4928 4.31 3500 1.7604 0.5626
0.4928 4.43 3600 1.8984 0.5142
0.4928 4.56 3700 1.8012 0.5763
0.4928 4.68 3800 1.7107 0.5671
0.4928 4.8 3900 1.7697 0.5598
0.4233 4.93 4000 1.6296 0.6084
0.4233 5.05 4100 2.0418 0.5343
0.4233 5.17 4200 1.8203 0.5526
0.4233 5.3 4300 1.9760 0.5292
0.4233 5.42 4400 2.0136 0.5153
0.2518 5.54 4500 2.0137 0.5121
0.2518 5.67 4600 2.0053 0.5257
0.2518 5.79 4700 1.9539 0.5423
0.2518 5.91 4800 2.0159 0.5686
0.2518 6.03 4900 2.0411 0.5817
0.2234 6.16 5000 2.0025 0.5780
0.2234 6.28 5100 2.1189 0.5413
0.2234 6.4 5200 2.1936 0.5628
0.2234 6.53 5300 2.1825 0.5210
0.2234 6.65 5400 2.0767 0.5471
0.1829 6.77 5500 1.9747 0.5587
0.1829 6.9 5600 2.1182 0.5847
0.1829 7.02 5700 2.1597 0.5437
0.1829 7.14 5800 2.0307 0.5629
0.1829 7.27 5900 2.0912 0.5450
0.1226 7.39 6000 2.2383 0.5379
0.1226 7.51 6100 2.2311 0.5834
0.1226 7.64 6200 2.2456 0.5438
0.1226 7.76 6300 2.2423 0.5860
0.1226 7.88 6400 2.2922 0.5245
0.0883 8.0 6500 2.3304 0.5650
0.0883 8.13 6600 2.3929 0.5288
0.0883 8.25 6700 2.3928 0.5344
0.0883 8.37 6800 2.3854 0.5266
0.0883 8.5 6900 2.4275 0.5339
0.044 8.62 7000 2.3929 0.5380
0.044 8.74 7100 2.3587 0.5339
0.044 8.87 7200 2.3372 0.5423
0.044 8.99 7300 2.3488 0.5424
0.044 9.11 7400 2.3543 0.5818
0.0558 9.24 7500 2.3397 0.5554
0.0558 9.36 7600 2.3255 0.5394
0.0558 9.48 7700 2.3184 0.5557
0.0558 9.61 7800 2.3293 0.5669
0.0558 9.73 7900 2.3358 0.5666
0.0323 9.85 8000 2.3307 0.5344
0.0323 9.98 8100 2.3321 0.5348

Framework versions