<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. -->
vit-small_rvl_cdip_100_examples_per_class_kd_CEKD_t1.5_a0.7
This model is a fine-tuned version of WinKawaks/vit-small-patch16-224 on the None dataset. It achieves the following results on the evaluation set:
- Loss: 1.2544
- Accuracy: 0.6375
- Brier Loss: 0.4805
- Nll: 3.0517
- F1 Micro: 0.6375
- F1 Macro: 0.6394
- Ece: 0.1654
- Aurc: 0.1376
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 100
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | Brier Loss | Nll | F1 Micro | F1 Macro | Ece | Aurc |
---|---|---|---|---|---|---|---|---|---|---|
No log | 1.0 | 25 | 3.2176 | 0.1275 | 0.9297 | 15.5568 | 0.1275 | 0.1255 | 0.1544 | 0.8595 |
No log | 2.0 | 50 | 2.4392 | 0.405 | 0.7503 | 9.6083 | 0.405 | 0.3723 | 0.1816 | 0.3640 |
No log | 3.0 | 75 | 1.9211 | 0.5025 | 0.6287 | 5.6023 | 0.5025 | 0.4930 | 0.1991 | 0.2451 |
No log | 4.0 | 100 | 1.7474 | 0.5375 | 0.5956 | 4.5712 | 0.5375 | 0.5387 | 0.1677 | 0.2244 |
No log | 5.0 | 125 | 1.7107 | 0.535 | 0.6051 | 4.3431 | 0.535 | 0.5180 | 0.1796 | 0.2269 |
No log | 6.0 | 150 | 1.7144 | 0.545 | 0.5988 | 3.6699 | 0.545 | 0.5455 | 0.1918 | 0.2253 |
No log | 7.0 | 175 | 1.9096 | 0.5625 | 0.6262 | 4.6856 | 0.5625 | 0.5459 | 0.1966 | 0.2362 |
No log | 8.0 | 200 | 1.6325 | 0.575 | 0.5815 | 3.9279 | 0.575 | 0.5705 | 0.1893 | 0.2026 |
No log | 9.0 | 225 | 1.8268 | 0.56 | 0.6088 | 4.5140 | 0.56 | 0.5482 | 0.1976 | 0.2213 |
No log | 10.0 | 250 | 1.9253 | 0.5575 | 0.6493 | 4.2860 | 0.5575 | 0.5427 | 0.2286 | 0.2445 |
No log | 11.0 | 275 | 1.6941 | 0.5725 | 0.5940 | 3.9317 | 0.5725 | 0.5827 | 0.2019 | 0.2232 |
No log | 12.0 | 300 | 1.8197 | 0.5575 | 0.6138 | 4.7928 | 0.5575 | 0.5476 | 0.2079 | 0.2240 |
No log | 13.0 | 325 | 1.8958 | 0.54 | 0.6508 | 4.2978 | 0.54 | 0.5338 | 0.2379 | 0.2357 |
No log | 14.0 | 350 | 1.8939 | 0.535 | 0.6522 | 4.5557 | 0.535 | 0.5143 | 0.2324 | 0.2350 |
No log | 15.0 | 375 | 1.8018 | 0.585 | 0.6042 | 4.4728 | 0.585 | 0.5829 | 0.2205 | 0.2182 |
No log | 16.0 | 400 | 1.7645 | 0.5975 | 0.5978 | 3.9939 | 0.5975 | 0.5992 | 0.2130 | 0.1927 |
No log | 17.0 | 425 | 1.6392 | 0.5925 | 0.5842 | 3.6783 | 0.5925 | 0.6039 | 0.1986 | 0.2017 |
No log | 18.0 | 450 | 1.6124 | 0.5875 | 0.5761 | 4.0535 | 0.5875 | 0.5721 | 0.2060 | 0.1792 |
No log | 19.0 | 475 | 1.7517 | 0.585 | 0.6102 | 3.9076 | 0.585 | 0.5786 | 0.2082 | 0.2071 |
0.6436 | 20.0 | 500 | 1.7467 | 0.5575 | 0.6166 | 3.5052 | 0.5575 | 0.5476 | 0.2252 | 0.2247 |
0.6436 | 21.0 | 525 | 1.6719 | 0.5825 | 0.5745 | 4.1235 | 0.5825 | 0.5877 | 0.1831 | 0.1723 |
0.6436 | 22.0 | 550 | 1.4222 | 0.605 | 0.5237 | 3.2051 | 0.605 | 0.6083 | 0.1813 | 0.1559 |
0.6436 | 23.0 | 575 | 1.6436 | 0.595 | 0.5701 | 4.3949 | 0.595 | 0.5834 | 0.1921 | 0.1901 |
0.6436 | 24.0 | 600 | 1.4244 | 0.6075 | 0.5197 | 3.3207 | 0.6075 | 0.6100 | 0.1548 | 0.1616 |
0.6436 | 25.0 | 625 | 1.4567 | 0.6075 | 0.5356 | 3.5288 | 0.6075 | 0.6107 | 0.1768 | 0.1652 |
0.6436 | 26.0 | 650 | 1.5889 | 0.595 | 0.5587 | 4.1521 | 0.595 | 0.5907 | 0.1943 | 0.1768 |
0.6436 | 27.0 | 675 | 1.4828 | 0.5725 | 0.5532 | 3.4259 | 0.5725 | 0.5720 | 0.2125 | 0.1803 |
0.6436 | 28.0 | 700 | 1.4671 | 0.5975 | 0.5509 | 3.2612 | 0.5975 | 0.6006 | 0.1983 | 0.1797 |
0.6436 | 29.0 | 725 | 1.4049 | 0.6225 | 0.5273 | 3.3136 | 0.6225 | 0.6237 | 0.1995 | 0.1600 |
0.6436 | 30.0 | 750 | 1.4039 | 0.6175 | 0.5208 | 3.2588 | 0.6175 | 0.6063 | 0.1770 | 0.1534 |
0.6436 | 31.0 | 775 | 1.4333 | 0.6 | 0.5378 | 3.6417 | 0.6 | 0.5995 | 0.1899 | 0.1632 |
0.6436 | 32.0 | 800 | 1.3311 | 0.64 | 0.5032 | 3.0056 | 0.64 | 0.6394 | 0.1699 | 0.1476 |
0.6436 | 33.0 | 825 | 1.3361 | 0.61 | 0.5079 | 3.2304 | 0.61 | 0.6123 | 0.1536 | 0.1517 |
0.6436 | 34.0 | 850 | 1.2984 | 0.64 | 0.4982 | 3.1446 | 0.64 | 0.6444 | 0.1636 | 0.1424 |
0.6436 | 35.0 | 875 | 1.3153 | 0.6275 | 0.4995 | 3.0722 | 0.6275 | 0.6288 | 0.1634 | 0.1486 |
0.6436 | 36.0 | 900 | 1.2773 | 0.6375 | 0.4880 | 2.7136 | 0.6375 | 0.6422 | 0.1606 | 0.1411 |
0.6436 | 37.0 | 925 | 1.2881 | 0.64 | 0.4946 | 3.0452 | 0.64 | 0.6437 | 0.1732 | 0.1440 |
0.6436 | 38.0 | 950 | 1.2609 | 0.64 | 0.4824 | 2.7407 | 0.64 | 0.6430 | 0.1485 | 0.1424 |
0.6436 | 39.0 | 975 | 1.2685 | 0.645 | 0.4869 | 2.7203 | 0.645 | 0.6484 | 0.1680 | 0.1398 |
0.0861 | 40.0 | 1000 | 1.2546 | 0.635 | 0.4808 | 2.7042 | 0.635 | 0.6356 | 0.1669 | 0.1416 |
0.0861 | 41.0 | 1025 | 1.2599 | 0.6425 | 0.4858 | 2.6880 | 0.6425 | 0.6457 | 0.1539 | 0.1387 |
0.0861 | 42.0 | 1050 | 1.2413 | 0.635 | 0.4783 | 2.8343 | 0.635 | 0.6361 | 0.1679 | 0.1369 |
0.0861 | 43.0 | 1075 | 1.2670 | 0.6325 | 0.4901 | 2.8366 | 0.6325 | 0.6337 | 0.1501 | 0.1399 |
0.0861 | 44.0 | 1100 | 1.2793 | 0.63 | 0.4919 | 3.1711 | 0.63 | 0.6309 | 0.1672 | 0.1465 |
0.0861 | 45.0 | 1125 | 1.2555 | 0.635 | 0.4844 | 2.9284 | 0.635 | 0.6379 | 0.1791 | 0.1401 |
0.0861 | 46.0 | 1150 | 1.2491 | 0.635 | 0.4806 | 2.8475 | 0.635 | 0.6358 | 0.1611 | 0.1392 |
0.0861 | 47.0 | 1175 | 1.2533 | 0.6325 | 0.4837 | 2.8229 | 0.6325 | 0.6352 | 0.1623 | 0.1378 |
0.0861 | 48.0 | 1200 | 1.2602 | 0.635 | 0.4857 | 2.9963 | 0.635 | 0.6368 | 0.1535 | 0.1426 |
0.0861 | 49.0 | 1225 | 1.2598 | 0.635 | 0.4848 | 2.8569 | 0.635 | 0.6370 | 0.1718 | 0.1389 |
0.0861 | 50.0 | 1250 | 1.2577 | 0.6225 | 0.4839 | 2.8645 | 0.6225 | 0.6237 | 0.1678 | 0.1420 |
0.0861 | 51.0 | 1275 | 1.2547 | 0.63 | 0.4817 | 2.8344 | 0.63 | 0.6314 | 0.1721 | 0.1399 |
0.0861 | 52.0 | 1300 | 1.2525 | 0.64 | 0.4819 | 2.7720 | 0.64 | 0.6411 | 0.1567 | 0.1378 |
0.0861 | 53.0 | 1325 | 1.2627 | 0.6325 | 0.4854 | 2.9202 | 0.6325 | 0.6337 | 0.1688 | 0.1406 |
0.0861 | 54.0 | 1350 | 1.2565 | 0.63 | 0.4836 | 2.8392 | 0.63 | 0.6320 | 0.1612 | 0.1404 |
0.0861 | 55.0 | 1375 | 1.2514 | 0.6325 | 0.4813 | 2.9887 | 0.6325 | 0.6343 | 0.1652 | 0.1386 |
0.0861 | 56.0 | 1400 | 1.2541 | 0.6275 | 0.4822 | 2.9067 | 0.6275 | 0.6296 | 0.1649 | 0.1401 |
0.0861 | 57.0 | 1425 | 1.2529 | 0.64 | 0.4810 | 2.9166 | 0.64 | 0.6432 | 0.1765 | 0.1372 |
0.0861 | 58.0 | 1450 | 1.2464 | 0.6275 | 0.4799 | 2.9713 | 0.6275 | 0.6291 | 0.1653 | 0.1401 |
0.0861 | 59.0 | 1475 | 1.2576 | 0.63 | 0.4826 | 2.9124 | 0.63 | 0.6323 | 0.1557 | 0.1397 |
0.0496 | 60.0 | 1500 | 1.2494 | 0.63 | 0.4804 | 2.8355 | 0.63 | 0.6317 | 0.1672 | 0.1390 |
0.0496 | 61.0 | 1525 | 1.2496 | 0.6325 | 0.4803 | 2.9091 | 0.6325 | 0.6352 | 0.1510 | 0.1383 |
0.0496 | 62.0 | 1550 | 1.2592 | 0.6375 | 0.4838 | 2.8980 | 0.6375 | 0.6384 | 0.1758 | 0.1398 |
0.0496 | 63.0 | 1575 | 1.2504 | 0.63 | 0.4806 | 2.9843 | 0.63 | 0.6316 | 0.1691 | 0.1391 |
0.0496 | 64.0 | 1600 | 1.2528 | 0.6325 | 0.4810 | 2.9045 | 0.6325 | 0.6349 | 0.1737 | 0.1388 |
0.0496 | 65.0 | 1625 | 1.2589 | 0.6425 | 0.4833 | 2.9817 | 0.6425 | 0.6447 | 0.1719 | 0.1380 |
0.0496 | 66.0 | 1650 | 1.2531 | 0.63 | 0.4811 | 2.9027 | 0.63 | 0.6321 | 0.1751 | 0.1391 |
0.0496 | 67.0 | 1675 | 1.2520 | 0.635 | 0.4808 | 2.9794 | 0.635 | 0.6379 | 0.1715 | 0.1378 |
0.0496 | 68.0 | 1700 | 1.2543 | 0.64 | 0.4815 | 2.9771 | 0.64 | 0.6420 | 0.1562 | 0.1380 |
0.0496 | 69.0 | 1725 | 1.2538 | 0.6325 | 0.4808 | 2.9080 | 0.6325 | 0.6345 | 0.1681 | 0.1385 |
0.0496 | 70.0 | 1750 | 1.2543 | 0.6325 | 0.4813 | 2.9102 | 0.6325 | 0.6347 | 0.1725 | 0.1390 |
0.0496 | 71.0 | 1775 | 1.2534 | 0.6325 | 0.4809 | 2.9778 | 0.6325 | 0.6353 | 0.1495 | 0.1385 |
0.0496 | 72.0 | 1800 | 1.2539 | 0.6375 | 0.4809 | 2.9024 | 0.6375 | 0.6394 | 0.1588 | 0.1381 |
0.0496 | 73.0 | 1825 | 1.2531 | 0.635 | 0.4806 | 2.9812 | 0.635 | 0.6378 | 0.1552 | 0.1380 |
0.0496 | 74.0 | 1850 | 1.2531 | 0.635 | 0.4805 | 2.9783 | 0.635 | 0.6377 | 0.1700 | 0.1380 |
0.0496 | 75.0 | 1875 | 1.2533 | 0.6375 | 0.4809 | 2.9772 | 0.6375 | 0.6400 | 0.1645 | 0.1372 |
0.0496 | 76.0 | 1900 | 1.2539 | 0.6375 | 0.4808 | 2.9777 | 0.6375 | 0.6393 | 0.1675 | 0.1376 |
0.0496 | 77.0 | 1925 | 1.2537 | 0.635 | 0.4808 | 2.9832 | 0.635 | 0.6375 | 0.1648 | 0.1381 |
0.0496 | 78.0 | 1950 | 1.2539 | 0.6375 | 0.4807 | 2.9769 | 0.6375 | 0.6394 | 0.1636 | 0.1374 |
0.0496 | 79.0 | 1975 | 1.2534 | 0.6375 | 0.4805 | 2.9796 | 0.6375 | 0.6399 | 0.1599 | 0.1375 |
0.048 | 80.0 | 2000 | 1.2537 | 0.6375 | 0.4806 | 3.0539 | 0.6375 | 0.6399 | 0.1657 | 0.1375 |
0.048 | 81.0 | 2025 | 1.2535 | 0.6375 | 0.4805 | 3.0534 | 0.6375 | 0.6399 | 0.1728 | 0.1375 |
0.048 | 82.0 | 2050 | 1.2539 | 0.6375 | 0.4806 | 2.9831 | 0.6375 | 0.6393 | 0.1674 | 0.1375 |
0.048 | 83.0 | 2075 | 1.2542 | 0.6375 | 0.4807 | 3.0538 | 0.6375 | 0.6399 | 0.1674 | 0.1375 |
0.048 | 84.0 | 2100 | 1.2539 | 0.6375 | 0.4805 | 3.0531 | 0.6375 | 0.6394 | 0.1564 | 0.1375 |
0.048 | 85.0 | 2125 | 1.2542 | 0.6375 | 0.4806 | 3.0531 | 0.6375 | 0.6393 | 0.1676 | 0.1376 |
0.048 | 86.0 | 2150 | 1.2541 | 0.6375 | 0.4806 | 3.0527 | 0.6375 | 0.6399 | 0.1691 | 0.1375 |
0.048 | 87.0 | 2175 | 1.2542 | 0.6375 | 0.4805 | 3.0525 | 0.6375 | 0.6394 | 0.1677 | 0.1376 |
0.048 | 88.0 | 2200 | 1.2542 | 0.6375 | 0.4806 | 3.0525 | 0.6375 | 0.6393 | 0.1651 | 0.1375 |
0.048 | 89.0 | 2225 | 1.2543 | 0.6375 | 0.4805 | 3.0525 | 0.6375 | 0.6394 | 0.1601 | 0.1375 |
0.048 | 90.0 | 2250 | 1.2543 | 0.6375 | 0.4805 | 3.0521 | 0.6375 | 0.6394 | 0.1661 | 0.1375 |
0.048 | 91.0 | 2275 | 1.2541 | 0.6375 | 0.4805 | 3.0521 | 0.6375 | 0.6394 | 0.1665 | 0.1376 |
0.048 | 92.0 | 2300 | 1.2542 | 0.6375 | 0.4805 | 3.0521 | 0.6375 | 0.6394 | 0.1638 | 0.1375 |
0.048 | 93.0 | 2325 | 1.2544 | 0.6375 | 0.4805 | 3.0518 | 0.6375 | 0.6394 | 0.1671 | 0.1376 |
0.048 | 94.0 | 2350 | 1.2543 | 0.6375 | 0.4805 | 3.0519 | 0.6375 | 0.6394 | 0.1601 | 0.1376 |
0.048 | 95.0 | 2375 | 1.2544 | 0.6375 | 0.4805 | 3.0518 | 0.6375 | 0.6394 | 0.1638 | 0.1376 |
0.048 | 96.0 | 2400 | 1.2544 | 0.6375 | 0.4805 | 3.0518 | 0.6375 | 0.6394 | 0.1638 | 0.1376 |
0.048 | 97.0 | 2425 | 1.2544 | 0.6375 | 0.4805 | 3.0517 | 0.6375 | 0.6394 | 0.1655 | 0.1376 |
0.048 | 98.0 | 2450 | 1.2544 | 0.6375 | 0.4805 | 3.0517 | 0.6375 | 0.6394 | 0.1638 | 0.1376 |
0.048 | 99.0 | 2475 | 1.2544 | 0.6375 | 0.4805 | 3.0517 | 0.6375 | 0.6394 | 0.1654 | 0.1376 |
0.0478 | 100.0 | 2500 | 1.2544 | 0.6375 | 0.4805 | 3.0517 | 0.6375 | 0.6394 | 0.1654 | 0.1376 |
Framework versions
- Transformers 4.28.0.dev0
- Pytorch 1.12.1+cu113
- Datasets 2.12.0
- Tokenizers 0.12.1