<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. -->
vit-small_rvl_cdip_100_examples_per_class_kd_CEKD_t2.5_a0.5
This model is a fine-tuned version of WinKawaks/vit-small-patch16-224 on the None dataset. It achieves the following results on the evaluation set:
- Loss: 1.4583
- Accuracy: 0.655
- Brier Loss: 0.4857
- Nll: 2.9372
- F1 Micro: 0.655
- F1 Macro: 0.6591
- Ece: 0.1679
- Aurc: 0.1394
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 100
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | Brier Loss | Nll | F1 Micro | F1 Macro | Ece | Aurc |
---|---|---|---|---|---|---|---|---|---|---|
No log | 1.0 | 25 | 4.2264 | 0.1375 | 0.9289 | 15.9084 | 0.1375 | 0.1395 | 0.1536 | 0.8596 |
No log | 2.0 | 50 | 3.2078 | 0.405 | 0.7396 | 8.9647 | 0.405 | 0.3723 | 0.2073 | 0.3570 |
No log | 3.0 | 75 | 2.4477 | 0.4975 | 0.6180 | 5.3439 | 0.4975 | 0.4756 | 0.1714 | 0.2421 |
No log | 4.0 | 100 | 2.2058 | 0.545 | 0.5825 | 4.3028 | 0.545 | 0.5448 | 0.1681 | 0.2147 |
No log | 5.0 | 125 | 2.1459 | 0.5325 | 0.6143 | 4.3798 | 0.5325 | 0.5164 | 0.2012 | 0.2274 |
No log | 6.0 | 150 | 2.0457 | 0.5825 | 0.5625 | 4.1921 | 0.5825 | 0.5823 | 0.1712 | 0.2008 |
No log | 7.0 | 175 | 1.9438 | 0.575 | 0.5557 | 4.2405 | 0.575 | 0.5654 | 0.1805 | 0.1894 |
No log | 8.0 | 200 | 1.9821 | 0.5675 | 0.5766 | 3.8326 | 0.5675 | 0.5665 | 0.1815 | 0.2050 |
No log | 9.0 | 225 | 2.1566 | 0.5425 | 0.6068 | 4.2488 | 0.5425 | 0.5367 | 0.2053 | 0.2167 |
No log | 10.0 | 250 | 1.9672 | 0.5925 | 0.5692 | 4.3417 | 0.5925 | 0.5968 | 0.2005 | 0.2114 |
No log | 11.0 | 275 | 2.0417 | 0.5725 | 0.6080 | 3.6972 | 0.5725 | 0.5608 | 0.2005 | 0.2168 |
No log | 12.0 | 300 | 1.9432 | 0.585 | 0.5704 | 3.6005 | 0.585 | 0.5840 | 0.1976 | 0.1939 |
No log | 13.0 | 325 | 1.9031 | 0.585 | 0.5816 | 4.0984 | 0.585 | 0.5835 | 0.1996 | 0.1911 |
No log | 14.0 | 350 | 1.8994 | 0.5925 | 0.5897 | 4.2703 | 0.5925 | 0.5926 | 0.2211 | 0.2041 |
No log | 15.0 | 375 | 1.8136 | 0.6325 | 0.5297 | 4.5861 | 0.6325 | 0.6299 | 0.1622 | 0.1578 |
No log | 16.0 | 400 | 1.6961 | 0.5925 | 0.5300 | 4.0317 | 0.5925 | 0.5839 | 0.1909 | 0.1630 |
No log | 17.0 | 425 | 1.7687 | 0.61 | 0.5357 | 3.6514 | 0.61 | 0.6110 | 0.1715 | 0.1703 |
No log | 18.0 | 450 | 1.8963 | 0.6 | 0.5785 | 4.7474 | 0.6 | 0.5842 | 0.2168 | 0.1893 |
No log | 19.0 | 475 | 1.7545 | 0.6175 | 0.5506 | 4.4192 | 0.6175 | 0.6086 | 0.2006 | 0.1759 |
0.8611 | 20.0 | 500 | 1.7832 | 0.61 | 0.5546 | 4.0543 | 0.61 | 0.6099 | 0.2133 | 0.1662 |
0.8611 | 21.0 | 525 | 1.7788 | 0.5875 | 0.5718 | 3.8585 | 0.5875 | 0.5855 | 0.2084 | 0.1848 |
0.8611 | 22.0 | 550 | 1.6323 | 0.62 | 0.5184 | 3.6953 | 0.62 | 0.6146 | 0.1921 | 0.1588 |
0.8611 | 23.0 | 575 | 1.6384 | 0.6325 | 0.5431 | 3.5349 | 0.6325 | 0.6269 | 0.2042 | 0.1678 |
0.8611 | 24.0 | 600 | 1.7895 | 0.62 | 0.5588 | 4.2768 | 0.62 | 0.6169 | 0.1993 | 0.1885 |
0.8611 | 25.0 | 625 | 1.5712 | 0.6175 | 0.5111 | 3.1891 | 0.6175 | 0.6199 | 0.1777 | 0.1552 |
0.8611 | 26.0 | 650 | 1.6139 | 0.62 | 0.5284 | 3.0912 | 0.62 | 0.6238 | 0.1793 | 0.1599 |
0.8611 | 27.0 | 675 | 1.6449 | 0.6375 | 0.5190 | 4.0147 | 0.6375 | 0.6313 | 0.1794 | 0.1606 |
0.8611 | 28.0 | 700 | 1.6379 | 0.6325 | 0.5355 | 3.5225 | 0.6325 | 0.6300 | 0.1859 | 0.1693 |
0.8611 | 29.0 | 725 | 1.5486 | 0.6375 | 0.5202 | 3.1611 | 0.6375 | 0.6407 | 0.1908 | 0.1608 |
0.8611 | 30.0 | 750 | 1.5410 | 0.63 | 0.5074 | 3.2562 | 0.63 | 0.6340 | 0.1772 | 0.1424 |
0.8611 | 31.0 | 775 | 1.5033 | 0.6575 | 0.4973 | 3.3321 | 0.6575 | 0.6619 | 0.1802 | 0.1451 |
0.8611 | 32.0 | 800 | 1.6065 | 0.6375 | 0.5260 | 3.4264 | 0.6375 | 0.6451 | 0.2028 | 0.1670 |
0.8611 | 33.0 | 825 | 1.5188 | 0.6525 | 0.5028 | 3.5128 | 0.6525 | 0.6536 | 0.1813 | 0.1491 |
0.8611 | 34.0 | 850 | 1.5034 | 0.635 | 0.5005 | 3.4093 | 0.635 | 0.6345 | 0.1602 | 0.1506 |
0.8611 | 35.0 | 875 | 1.5711 | 0.66 | 0.5163 | 3.6591 | 0.66 | 0.6587 | 0.1884 | 0.1574 |
0.8611 | 36.0 | 900 | 1.5224 | 0.6475 | 0.5057 | 3.1773 | 0.6475 | 0.6491 | 0.1802 | 0.1526 |
0.8611 | 37.0 | 925 | 1.4781 | 0.6475 | 0.4938 | 3.3389 | 0.6475 | 0.6508 | 0.1753 | 0.1420 |
0.8611 | 38.0 | 950 | 1.4991 | 0.65 | 0.5005 | 3.4077 | 0.65 | 0.6541 | 0.1843 | 0.1482 |
0.8611 | 39.0 | 975 | 1.4613 | 0.6625 | 0.4848 | 3.2461 | 0.6625 | 0.6675 | 0.1647 | 0.1386 |
0.0907 | 40.0 | 1000 | 1.4824 | 0.64 | 0.4951 | 3.1830 | 0.64 | 0.6444 | 0.1779 | 0.1431 |
0.0907 | 41.0 | 1025 | 1.5224 | 0.6625 | 0.5004 | 3.4231 | 0.6625 | 0.6659 | 0.1769 | 0.1506 |
0.0907 | 42.0 | 1050 | 1.4882 | 0.6375 | 0.5013 | 3.0893 | 0.6375 | 0.6451 | 0.1844 | 0.1465 |
0.0907 | 43.0 | 1075 | 1.4852 | 0.665 | 0.4901 | 3.4025 | 0.665 | 0.6685 | 0.1869 | 0.1442 |
0.0907 | 44.0 | 1100 | 1.4744 | 0.65 | 0.4934 | 3.4829 | 0.65 | 0.6528 | 0.1836 | 0.1426 |
0.0907 | 45.0 | 1125 | 1.4735 | 0.66 | 0.4892 | 3.1763 | 0.66 | 0.6642 | 0.1666 | 0.1427 |
0.0907 | 46.0 | 1150 | 1.4690 | 0.65 | 0.4898 | 3.0960 | 0.65 | 0.6537 | 0.1642 | 0.1427 |
0.0907 | 47.0 | 1175 | 1.4773 | 0.6475 | 0.4909 | 3.2535 | 0.6475 | 0.6506 | 0.1749 | 0.1446 |
0.0907 | 48.0 | 1200 | 1.4632 | 0.6575 | 0.4884 | 3.1685 | 0.6575 | 0.6625 | 0.1750 | 0.1398 |
0.0907 | 49.0 | 1225 | 1.4712 | 0.66 | 0.4896 | 3.0915 | 0.66 | 0.6634 | 0.1697 | 0.1432 |
0.0907 | 50.0 | 1250 | 1.4630 | 0.655 | 0.4883 | 3.0953 | 0.655 | 0.6591 | 0.1650 | 0.1406 |
0.0907 | 51.0 | 1275 | 1.4607 | 0.66 | 0.4860 | 3.0153 | 0.66 | 0.6653 | 0.1665 | 0.1411 |
0.0907 | 52.0 | 1300 | 1.4646 | 0.6475 | 0.4889 | 3.0242 | 0.6475 | 0.6510 | 0.1713 | 0.1426 |
0.0907 | 53.0 | 1325 | 1.4717 | 0.6575 | 0.4904 | 3.0926 | 0.6575 | 0.6605 | 0.1789 | 0.1428 |
0.0907 | 54.0 | 1350 | 1.4554 | 0.645 | 0.4868 | 3.0882 | 0.645 | 0.6489 | 0.1664 | 0.1408 |
0.0907 | 55.0 | 1375 | 1.4581 | 0.6575 | 0.4855 | 3.0904 | 0.6575 | 0.6614 | 0.1602 | 0.1404 |
0.0907 | 56.0 | 1400 | 1.4588 | 0.655 | 0.4866 | 3.0910 | 0.655 | 0.6598 | 0.1722 | 0.1405 |
0.0907 | 57.0 | 1425 | 1.4582 | 0.6575 | 0.4859 | 3.0143 | 0.6575 | 0.6619 | 0.1540 | 0.1397 |
0.0907 | 58.0 | 1450 | 1.4613 | 0.6575 | 0.4865 | 3.0143 | 0.6575 | 0.6620 | 0.1659 | 0.1402 |
0.0907 | 59.0 | 1475 | 1.4593 | 0.655 | 0.4867 | 3.0140 | 0.655 | 0.6599 | 0.1583 | 0.1402 |
0.0478 | 60.0 | 1500 | 1.4593 | 0.655 | 0.4864 | 3.0148 | 0.655 | 0.6593 | 0.1657 | 0.1404 |
0.0478 | 61.0 | 1525 | 1.4588 | 0.655 | 0.4861 | 3.0165 | 0.655 | 0.6590 | 0.1757 | 0.1401 |
0.0478 | 62.0 | 1550 | 1.4598 | 0.6575 | 0.4864 | 3.0140 | 0.6575 | 0.6616 | 0.1528 | 0.1403 |
0.0478 | 63.0 | 1575 | 1.4595 | 0.6575 | 0.4865 | 3.0143 | 0.6575 | 0.6623 | 0.1538 | 0.1400 |
0.0478 | 64.0 | 1600 | 1.4591 | 0.655 | 0.4864 | 2.9404 | 0.655 | 0.6591 | 0.1669 | 0.1399 |
0.0478 | 65.0 | 1625 | 1.4568 | 0.655 | 0.4854 | 2.9393 | 0.655 | 0.6596 | 0.1644 | 0.1393 |
0.0478 | 66.0 | 1650 | 1.4569 | 0.655 | 0.4855 | 3.0146 | 0.655 | 0.6599 | 0.1619 | 0.1401 |
0.0478 | 67.0 | 1675 | 1.4592 | 0.655 | 0.4865 | 2.9380 | 0.655 | 0.6596 | 0.1540 | 0.1399 |
0.0478 | 68.0 | 1700 | 1.4580 | 0.66 | 0.4858 | 2.9406 | 0.66 | 0.6641 | 0.1850 | 0.1396 |
0.0478 | 69.0 | 1725 | 1.4591 | 0.655 | 0.4865 | 2.9381 | 0.655 | 0.6593 | 0.1651 | 0.1399 |
0.0478 | 70.0 | 1750 | 1.4586 | 0.655 | 0.4859 | 2.9388 | 0.655 | 0.6596 | 0.1773 | 0.1397 |
0.0478 | 71.0 | 1775 | 1.4585 | 0.6525 | 0.4862 | 2.9366 | 0.6525 | 0.6566 | 0.1644 | 0.1400 |
0.0478 | 72.0 | 1800 | 1.4582 | 0.66 | 0.4858 | 2.9385 | 0.66 | 0.6644 | 0.1809 | 0.1396 |
0.0478 | 73.0 | 1825 | 1.4577 | 0.65 | 0.4857 | 2.9374 | 0.65 | 0.6543 | 0.1715 | 0.1403 |
0.0478 | 74.0 | 1850 | 1.4578 | 0.6525 | 0.4857 | 2.9381 | 0.6525 | 0.6565 | 0.1748 | 0.1401 |
0.0478 | 75.0 | 1875 | 1.4583 | 0.65 | 0.4860 | 2.9371 | 0.65 | 0.6544 | 0.1661 | 0.1402 |
0.0478 | 76.0 | 1900 | 1.4582 | 0.65 | 0.4859 | 2.9369 | 0.65 | 0.6544 | 0.1760 | 0.1402 |
0.0478 | 77.0 | 1925 | 1.4585 | 0.65 | 0.4859 | 2.9367 | 0.65 | 0.6546 | 0.1609 | 0.1403 |
0.0478 | 78.0 | 1950 | 1.4580 | 0.65 | 0.4858 | 2.9372 | 0.65 | 0.6546 | 0.1626 | 0.1401 |
0.0478 | 79.0 | 1975 | 1.4578 | 0.6525 | 0.4857 | 2.9369 | 0.6525 | 0.6564 | 0.1706 | 0.1400 |
0.0457 | 80.0 | 2000 | 1.4584 | 0.6525 | 0.4859 | 2.9370 | 0.6525 | 0.6564 | 0.1712 | 0.1402 |
0.0457 | 81.0 | 2025 | 1.4587 | 0.6525 | 0.4860 | 2.9370 | 0.6525 | 0.6568 | 0.1631 | 0.1402 |
0.0457 | 82.0 | 2050 | 1.4584 | 0.6525 | 0.4859 | 2.9369 | 0.6525 | 0.6568 | 0.1631 | 0.1401 |
0.0457 | 83.0 | 2075 | 1.4581 | 0.65 | 0.4858 | 2.9369 | 0.65 | 0.6543 | 0.1703 | 0.1401 |
0.0457 | 84.0 | 2100 | 1.4581 | 0.6525 | 0.4858 | 2.9370 | 0.6525 | 0.6564 | 0.1588 | 0.1401 |
0.0457 | 85.0 | 2125 | 1.4582 | 0.6525 | 0.4858 | 2.9370 | 0.6525 | 0.6568 | 0.1723 | 0.1400 |
0.0457 | 86.0 | 2150 | 1.4582 | 0.6525 | 0.4858 | 2.9371 | 0.6525 | 0.6564 | 0.1724 | 0.1400 |
0.0457 | 87.0 | 2175 | 1.4582 | 0.6525 | 0.4858 | 2.9369 | 0.6525 | 0.6567 | 0.1720 | 0.1400 |
0.0457 | 88.0 | 2200 | 1.4582 | 0.6525 | 0.4858 | 2.9372 | 0.6525 | 0.6567 | 0.1606 | 0.1401 |
0.0457 | 89.0 | 2225 | 1.4583 | 0.6525 | 0.4858 | 2.9372 | 0.6525 | 0.6567 | 0.1665 | 0.1401 |
0.0457 | 90.0 | 2250 | 1.4583 | 0.6525 | 0.4857 | 2.9370 | 0.6525 | 0.6564 | 0.1688 | 0.1400 |
0.0457 | 91.0 | 2275 | 1.4583 | 0.6525 | 0.4858 | 2.9371 | 0.6525 | 0.6567 | 0.1695 | 0.1400 |
0.0457 | 92.0 | 2300 | 1.4583 | 0.655 | 0.4858 | 2.9372 | 0.655 | 0.6591 | 0.1660 | 0.1394 |
0.0457 | 93.0 | 2325 | 1.4583 | 0.6525 | 0.4857 | 2.9371 | 0.6525 | 0.6565 | 0.1645 | 0.1400 |
0.0457 | 94.0 | 2350 | 1.4583 | 0.6525 | 0.4858 | 2.9371 | 0.6525 | 0.6567 | 0.1665 | 0.1399 |
0.0457 | 95.0 | 2375 | 1.4583 | 0.6525 | 0.4858 | 2.9372 | 0.6525 | 0.6567 | 0.1704 | 0.1399 |
0.0457 | 96.0 | 2400 | 1.4583 | 0.655 | 0.4858 | 2.9372 | 0.655 | 0.6588 | 0.1660 | 0.1395 |
0.0457 | 97.0 | 2425 | 1.4582 | 0.6525 | 0.4857 | 2.9372 | 0.6525 | 0.6567 | 0.1704 | 0.1399 |
0.0457 | 98.0 | 2450 | 1.4582 | 0.655 | 0.4857 | 2.9372 | 0.655 | 0.6591 | 0.1679 | 0.1394 |
0.0457 | 99.0 | 2475 | 1.4583 | 0.6525 | 0.4857 | 2.9372 | 0.6525 | 0.6567 | 0.1704 | 0.1399 |
0.0456 | 100.0 | 2500 | 1.4583 | 0.655 | 0.4857 | 2.9372 | 0.655 | 0.6591 | 0.1679 | 0.1394 |
Framework versions
- Transformers 4.28.0.dev0
- Pytorch 1.12.1+cu113
- Datasets 2.12.0
- Tokenizers 0.12.1