<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. -->
vit-small_rvl_cdip_100_examples_per_class_kd_CEKD_t5.0_a0.7
This model is a fine-tuned version of WinKawaks/vit-small-patch16-224 on the None dataset. It achieves the following results on the evaluation set:
- Loss: 1.2378
- Accuracy: 0.645
- Brier Loss: 0.4995
- Nll: 2.6600
- F1 Micro: 0.645
- F1 Macro: 0.6464
- Ece: 0.1850
- Aurc: 0.1447
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 100
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | Brier Loss | Nll | F1 Micro | F1 Macro | Ece | Aurc |
---|---|---|---|---|---|---|---|---|---|---|
No log | 1.0 | 25 | 3.1863 | 0.105 | 0.9328 | 15.2391 | 0.1050 | 0.1096 | 0.1551 | 0.8788 |
No log | 2.0 | 50 | 2.4570 | 0.395 | 0.7500 | 9.2532 | 0.395 | 0.3662 | 0.1883 | 0.3593 |
No log | 3.0 | 75 | 1.9474 | 0.51 | 0.6157 | 5.2483 | 0.51 | 0.4950 | 0.1693 | 0.2362 |
No log | 4.0 | 100 | 1.8038 | 0.5375 | 0.5910 | 4.7704 | 0.5375 | 0.5412 | 0.1672 | 0.2240 |
No log | 5.0 | 125 | 1.7706 | 0.5425 | 0.6043 | 4.4142 | 0.5425 | 0.5313 | 0.1961 | 0.2262 |
No log | 6.0 | 150 | 1.6182 | 0.58 | 0.5399 | 3.8940 | 0.58 | 0.5814 | 0.1548 | 0.1768 |
No log | 7.0 | 175 | 1.6199 | 0.6025 | 0.5494 | 3.7722 | 0.6025 | 0.6047 | 0.1571 | 0.1815 |
No log | 8.0 | 200 | 1.6354 | 0.585 | 0.5620 | 4.3106 | 0.585 | 0.5782 | 0.2067 | 0.1958 |
No log | 9.0 | 225 | 1.8421 | 0.555 | 0.6076 | 5.4885 | 0.555 | 0.5516 | 0.1995 | 0.2339 |
No log | 10.0 | 250 | 1.8780 | 0.545 | 0.6302 | 5.0672 | 0.545 | 0.5457 | 0.2036 | 0.2356 |
No log | 11.0 | 275 | 1.4752 | 0.59 | 0.5450 | 3.4210 | 0.59 | 0.5985 | 0.1751 | 0.1817 |
No log | 12.0 | 300 | 1.4825 | 0.615 | 0.5332 | 3.3838 | 0.615 | 0.6180 | 0.1764 | 0.1727 |
No log | 13.0 | 325 | 1.4550 | 0.6325 | 0.5238 | 3.3565 | 0.6325 | 0.6264 | 0.1702 | 0.1607 |
No log | 14.0 | 350 | 1.4558 | 0.6025 | 0.5424 | 3.2294 | 0.6025 | 0.6060 | 0.1850 | 0.1709 |
No log | 15.0 | 375 | 1.4164 | 0.6225 | 0.5239 | 3.4651 | 0.6225 | 0.6149 | 0.1797 | 0.1727 |
No log | 16.0 | 400 | 1.4977 | 0.5975 | 0.5490 | 4.1918 | 0.5975 | 0.5901 | 0.1918 | 0.1761 |
No log | 17.0 | 425 | 1.4744 | 0.605 | 0.5490 | 3.7221 | 0.605 | 0.5971 | 0.1955 | 0.1752 |
No log | 18.0 | 450 | 1.5371 | 0.6225 | 0.5563 | 3.9267 | 0.6225 | 0.6194 | 0.1946 | 0.1713 |
No log | 19.0 | 475 | 1.3703 | 0.61 | 0.5230 | 2.9363 | 0.61 | 0.6115 | 0.1808 | 0.1606 |
0.6508 | 20.0 | 500 | 1.3942 | 0.625 | 0.5353 | 3.7288 | 0.625 | 0.6218 | 0.1949 | 0.1549 |
0.6508 | 21.0 | 525 | 1.3539 | 0.62 | 0.5281 | 3.2632 | 0.62 | 0.6256 | 0.2058 | 0.1554 |
0.6508 | 22.0 | 550 | 1.3411 | 0.6525 | 0.5040 | 3.4382 | 0.6525 | 0.6462 | 0.1740 | 0.1522 |
0.6508 | 23.0 | 575 | 1.3133 | 0.62 | 0.5073 | 3.1716 | 0.62 | 0.6213 | 0.1804 | 0.1497 |
0.6508 | 24.0 | 600 | 1.4132 | 0.6275 | 0.5343 | 3.4836 | 0.6275 | 0.6311 | 0.1808 | 0.1635 |
0.6508 | 25.0 | 625 | 1.4322 | 0.6275 | 0.5464 | 2.9913 | 0.6275 | 0.6374 | 0.1949 | 0.1747 |
0.6508 | 26.0 | 650 | 1.4199 | 0.615 | 0.5482 | 3.2476 | 0.615 | 0.6183 | 0.1977 | 0.1705 |
0.6508 | 27.0 | 675 | 1.3493 | 0.6275 | 0.5250 | 3.5747 | 0.6275 | 0.6239 | 0.2046 | 0.1518 |
0.6508 | 28.0 | 700 | 1.2954 | 0.635 | 0.5078 | 3.0855 | 0.635 | 0.6355 | 0.1787 | 0.1475 |
0.6508 | 29.0 | 725 | 1.3715 | 0.6375 | 0.5270 | 3.3421 | 0.6375 | 0.6254 | 0.1888 | 0.1591 |
0.6508 | 30.0 | 750 | 1.3038 | 0.645 | 0.5160 | 3.2790 | 0.645 | 0.6443 | 0.1859 | 0.1543 |
0.6508 | 31.0 | 775 | 1.3311 | 0.6375 | 0.5259 | 3.0953 | 0.6375 | 0.6364 | 0.1899 | 0.1593 |
0.6508 | 32.0 | 800 | 1.2487 | 0.6375 | 0.4942 | 2.9030 | 0.6375 | 0.6406 | 0.1822 | 0.1424 |
0.6508 | 33.0 | 825 | 1.2838 | 0.645 | 0.5096 | 2.8108 | 0.645 | 0.6448 | 0.1845 | 0.1532 |
0.6508 | 34.0 | 850 | 1.2788 | 0.6525 | 0.5103 | 2.8377 | 0.6525 | 0.6524 | 0.2013 | 0.1505 |
0.6508 | 35.0 | 875 | 1.2478 | 0.6425 | 0.5011 | 2.6533 | 0.6425 | 0.6432 | 0.1735 | 0.1435 |
0.6508 | 36.0 | 900 | 1.2420 | 0.6375 | 0.5030 | 2.5071 | 0.6375 | 0.6399 | 0.1853 | 0.1461 |
0.6508 | 37.0 | 925 | 1.2406 | 0.6375 | 0.4992 | 2.5840 | 0.6375 | 0.6391 | 0.1795 | 0.1456 |
0.6508 | 38.0 | 950 | 1.2493 | 0.645 | 0.5035 | 2.5959 | 0.645 | 0.6463 | 0.1905 | 0.1461 |
0.6508 | 39.0 | 975 | 1.2446 | 0.6425 | 0.5029 | 2.6545 | 0.6425 | 0.6441 | 0.1943 | 0.1445 |
0.0591 | 40.0 | 1000 | 1.2471 | 0.6525 | 0.5005 | 2.5163 | 0.6525 | 0.6529 | 0.1830 | 0.1460 |
0.0591 | 41.0 | 1025 | 1.2420 | 0.635 | 0.5009 | 2.5884 | 0.635 | 0.6371 | 0.1842 | 0.1448 |
0.0591 | 42.0 | 1050 | 1.2471 | 0.6475 | 0.5016 | 2.6730 | 0.6475 | 0.6476 | 0.1905 | 0.1463 |
0.0591 | 43.0 | 1075 | 1.2452 | 0.635 | 0.5036 | 2.5784 | 0.635 | 0.6373 | 0.1786 | 0.1466 |
0.0591 | 44.0 | 1100 | 1.2404 | 0.6475 | 0.4999 | 2.5804 | 0.6475 | 0.6468 | 0.1757 | 0.1448 |
0.0591 | 45.0 | 1125 | 1.2443 | 0.64 | 0.5025 | 2.5843 | 0.64 | 0.6425 | 0.1852 | 0.1457 |
0.0591 | 46.0 | 1150 | 1.2429 | 0.6425 | 0.5001 | 2.5071 | 0.6425 | 0.6441 | 0.1886 | 0.1454 |
0.0591 | 47.0 | 1175 | 1.2450 | 0.645 | 0.5028 | 2.5860 | 0.645 | 0.6460 | 0.1957 | 0.1453 |
0.0591 | 48.0 | 1200 | 1.2391 | 0.6375 | 0.4993 | 2.6594 | 0.6375 | 0.6379 | 0.1802 | 0.1456 |
0.0591 | 49.0 | 1225 | 1.2421 | 0.6425 | 0.5006 | 2.5857 | 0.6425 | 0.6428 | 0.1933 | 0.1450 |
0.0591 | 50.0 | 1250 | 1.2413 | 0.6425 | 0.5007 | 2.6657 | 0.6425 | 0.6432 | 0.1861 | 0.1455 |
0.0591 | 51.0 | 1275 | 1.2399 | 0.645 | 0.4995 | 2.5804 | 0.645 | 0.6469 | 0.1949 | 0.1448 |
0.0591 | 52.0 | 1300 | 1.2425 | 0.645 | 0.5013 | 2.5908 | 0.645 | 0.6442 | 0.1766 | 0.1448 |
0.0591 | 53.0 | 1325 | 1.2407 | 0.64 | 0.5006 | 2.5801 | 0.64 | 0.6415 | 0.1818 | 0.1458 |
0.0591 | 54.0 | 1350 | 1.2402 | 0.6425 | 0.5004 | 2.6583 | 0.6425 | 0.6451 | 0.1967 | 0.1452 |
0.0591 | 55.0 | 1375 | 1.2394 | 0.645 | 0.5000 | 2.5852 | 0.645 | 0.6464 | 0.1829 | 0.1446 |
0.0591 | 56.0 | 1400 | 1.2391 | 0.6425 | 0.4999 | 2.5903 | 0.6425 | 0.6444 | 0.1902 | 0.1449 |
0.0591 | 57.0 | 1425 | 1.2384 | 0.6475 | 0.4994 | 2.5864 | 0.6475 | 0.6483 | 0.1935 | 0.1446 |
0.0591 | 58.0 | 1450 | 1.2409 | 0.6425 | 0.5007 | 2.5842 | 0.6425 | 0.6450 | 0.1868 | 0.1451 |
0.0591 | 59.0 | 1475 | 1.2389 | 0.6425 | 0.4999 | 2.5848 | 0.6425 | 0.6444 | 0.1845 | 0.1447 |
0.0363 | 60.0 | 1500 | 1.2391 | 0.6425 | 0.4998 | 2.6608 | 0.6425 | 0.6443 | 0.1823 | 0.1449 |
0.0363 | 61.0 | 1525 | 1.2393 | 0.6475 | 0.5002 | 2.6602 | 0.6475 | 0.6484 | 0.1966 | 0.1446 |
0.0363 | 62.0 | 1550 | 1.2385 | 0.6425 | 0.4994 | 2.5912 | 0.6425 | 0.6427 | 0.1932 | 0.1448 |
0.0363 | 63.0 | 1575 | 1.2396 | 0.6425 | 0.5003 | 2.6605 | 0.6425 | 0.6444 | 0.1909 | 0.1450 |
0.0363 | 64.0 | 1600 | 1.2388 | 0.6425 | 0.4996 | 2.6609 | 0.6425 | 0.6443 | 0.1862 | 0.1449 |
0.0363 | 65.0 | 1625 | 1.2387 | 0.645 | 0.5000 | 2.6604 | 0.645 | 0.6465 | 0.1826 | 0.1446 |
0.0363 | 66.0 | 1650 | 1.2390 | 0.645 | 0.4998 | 2.5910 | 0.645 | 0.6464 | 0.1868 | 0.1447 |
0.0363 | 67.0 | 1675 | 1.2388 | 0.6425 | 0.4999 | 2.6605 | 0.6425 | 0.6444 | 0.1803 | 0.1448 |
0.0363 | 68.0 | 1700 | 1.2387 | 0.6425 | 0.4996 | 2.6608 | 0.6425 | 0.6444 | 0.1845 | 0.1448 |
0.0363 | 69.0 | 1725 | 1.2388 | 0.6475 | 0.4999 | 2.6597 | 0.6475 | 0.6484 | 0.1878 | 0.1445 |
0.0363 | 70.0 | 1750 | 1.2387 | 0.645 | 0.4997 | 2.6601 | 0.645 | 0.6465 | 0.1870 | 0.1448 |
0.0363 | 71.0 | 1775 | 1.2382 | 0.6425 | 0.4996 | 2.6606 | 0.6425 | 0.6444 | 0.1954 | 0.1448 |
0.0363 | 72.0 | 1800 | 1.2387 | 0.645 | 0.4998 | 2.6595 | 0.645 | 0.6465 | 0.1866 | 0.1447 |
0.0363 | 73.0 | 1825 | 1.2381 | 0.645 | 0.4996 | 2.6602 | 0.645 | 0.6464 | 0.1838 | 0.1446 |
0.0363 | 74.0 | 1850 | 1.2384 | 0.6425 | 0.4996 | 2.6605 | 0.6425 | 0.6444 | 0.1908 | 0.1449 |
0.0363 | 75.0 | 1875 | 1.2384 | 0.6425 | 0.4997 | 2.6601 | 0.6425 | 0.6443 | 0.1876 | 0.1449 |
0.0363 | 76.0 | 1900 | 1.2383 | 0.645 | 0.4996 | 2.6602 | 0.645 | 0.6464 | 0.1881 | 0.1447 |
0.0363 | 77.0 | 1925 | 1.2383 | 0.645 | 0.4997 | 2.6601 | 0.645 | 0.6464 | 0.1851 | 0.1447 |
0.0363 | 78.0 | 1950 | 1.2382 | 0.6425 | 0.4996 | 2.6601 | 0.6425 | 0.6443 | 0.1882 | 0.1448 |
0.0363 | 79.0 | 1975 | 1.2381 | 0.645 | 0.4996 | 2.6600 | 0.645 | 0.6464 | 0.1854 | 0.1447 |
0.036 | 80.0 | 2000 | 1.2381 | 0.6425 | 0.4996 | 2.6603 | 0.6425 | 0.6443 | 0.1882 | 0.1448 |
0.036 | 81.0 | 2025 | 1.2382 | 0.645 | 0.4996 | 2.6601 | 0.645 | 0.6464 | 0.1854 | 0.1447 |
0.036 | 82.0 | 2050 | 1.2380 | 0.6425 | 0.4996 | 2.6601 | 0.6425 | 0.6443 | 0.1942 | 0.1448 |
0.036 | 83.0 | 2075 | 1.2380 | 0.645 | 0.4996 | 2.6602 | 0.645 | 0.6464 | 0.1884 | 0.1447 |
0.036 | 84.0 | 2100 | 1.2379 | 0.645 | 0.4995 | 2.6601 | 0.645 | 0.6464 | 0.1849 | 0.1447 |
0.036 | 85.0 | 2125 | 1.2380 | 0.6425 | 0.4996 | 2.6600 | 0.6425 | 0.6443 | 0.1895 | 0.1449 |
0.036 | 86.0 | 2150 | 1.2381 | 0.645 | 0.4996 | 2.6601 | 0.645 | 0.6464 | 0.1870 | 0.1447 |
0.036 | 87.0 | 2175 | 1.2379 | 0.6425 | 0.4995 | 2.6601 | 0.6425 | 0.6443 | 0.1925 | 0.1449 |
0.036 | 88.0 | 2200 | 1.2379 | 0.645 | 0.4995 | 2.6600 | 0.645 | 0.6464 | 0.1900 | 0.1447 |
0.036 | 89.0 | 2225 | 1.2379 | 0.645 | 0.4995 | 2.6601 | 0.645 | 0.6464 | 0.1850 | 0.1447 |
0.036 | 90.0 | 2250 | 1.2379 | 0.645 | 0.4995 | 2.6599 | 0.645 | 0.6464 | 0.1900 | 0.1447 |
0.036 | 91.0 | 2275 | 1.2378 | 0.6425 | 0.4995 | 2.6600 | 0.6425 | 0.6443 | 0.1875 | 0.1448 |
0.036 | 92.0 | 2300 | 1.2379 | 0.645 | 0.4996 | 2.6600 | 0.645 | 0.6464 | 0.1850 | 0.1447 |
0.036 | 93.0 | 2325 | 1.2379 | 0.645 | 0.4995 | 2.6600 | 0.645 | 0.6464 | 0.1850 | 0.1447 |
0.036 | 94.0 | 2350 | 1.2378 | 0.645 | 0.4995 | 2.6599 | 0.645 | 0.6464 | 0.1850 | 0.1447 |
0.036 | 95.0 | 2375 | 1.2378 | 0.645 | 0.4995 | 2.6600 | 0.645 | 0.6464 | 0.1850 | 0.1447 |
0.036 | 96.0 | 2400 | 1.2378 | 0.645 | 0.4995 | 2.6600 | 0.645 | 0.6464 | 0.1850 | 0.1447 |
0.036 | 97.0 | 2425 | 1.2378 | 0.645 | 0.4995 | 2.6600 | 0.645 | 0.6464 | 0.1850 | 0.1447 |
0.036 | 98.0 | 2450 | 1.2378 | 0.645 | 0.4995 | 2.6600 | 0.645 | 0.6464 | 0.1850 | 0.1447 |
0.036 | 99.0 | 2475 | 1.2378 | 0.645 | 0.4995 | 2.6600 | 0.645 | 0.6464 | 0.1850 | 0.1447 |
0.036 | 100.0 | 2500 | 1.2378 | 0.645 | 0.4995 | 2.6600 | 0.645 | 0.6464 | 0.1850 | 0.1447 |
Framework versions
- Transformers 4.28.0.dev0
- Pytorch 1.12.1+cu113
- Datasets 2.12.0
- Tokenizers 0.12.1