<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. -->
vit-small_rvl_cdip_100_examples_per_class_kd_CEKD_t5.0_a0.9
This model is a fine-tuned version of WinKawaks/vit-small-patch16-224 on the None dataset. It achieves the following results on the evaluation set:
- Loss: 1.2897
- Accuracy: 0.635
- Brier Loss: 0.5186
- Nll: 2.9908
- F1 Micro: 0.635
- F1 Macro: 0.6391
- Ece: 0.1984
- Aurc: 0.1511
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 100
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | Brier Loss | Nll | F1 Micro | F1 Macro | Ece | Aurc |
---|---|---|---|---|---|---|---|---|---|---|
No log | 1.0 | 25 | 2.8799 | 0.12 | 0.9317 | 15.6566 | 0.12 | 0.1217 | 0.1503 | 0.8678 |
No log | 2.0 | 50 | 2.2166 | 0.395 | 0.7576 | 9.4150 | 0.395 | 0.3645 | 0.2155 | 0.3726 |
No log | 3.0 | 75 | 1.7821 | 0.505 | 0.6346 | 5.5305 | 0.505 | 0.4975 | 0.1755 | 0.2454 |
No log | 4.0 | 100 | 1.6660 | 0.5275 | 0.6038 | 4.9669 | 0.5275 | 0.5333 | 0.1684 | 0.2324 |
No log | 5.0 | 125 | 1.6118 | 0.54 | 0.5943 | 4.8266 | 0.54 | 0.5233 | 0.1947 | 0.2249 |
No log | 6.0 | 150 | 1.7108 | 0.5275 | 0.6168 | 4.4308 | 0.5275 | 0.5247 | 0.2018 | 0.2418 |
No log | 7.0 | 175 | 1.6465 | 0.5825 | 0.5721 | 4.8918 | 0.5825 | 0.5614 | 0.1887 | 0.1995 |
No log | 8.0 | 200 | 1.6441 | 0.565 | 0.6040 | 4.2349 | 0.565 | 0.5591 | 0.1933 | 0.2216 |
No log | 9.0 | 225 | 1.7054 | 0.565 | 0.6054 | 4.6348 | 0.565 | 0.5649 | 0.1845 | 0.2033 |
No log | 10.0 | 250 | 1.6724 | 0.5375 | 0.6191 | 4.3502 | 0.5375 | 0.5257 | 0.1991 | 0.2223 |
No log | 11.0 | 275 | 1.5397 | 0.57 | 0.5757 | 4.1311 | 0.57 | 0.5715 | 0.2079 | 0.1936 |
No log | 12.0 | 300 | 1.7636 | 0.55 | 0.6394 | 5.0515 | 0.55 | 0.5376 | 0.2252 | 0.2268 |
No log | 13.0 | 325 | 1.6080 | 0.575 | 0.5997 | 4.2707 | 0.575 | 0.5515 | 0.2048 | 0.1887 |
No log | 14.0 | 350 | 1.7572 | 0.575 | 0.6205 | 4.6140 | 0.575 | 0.5705 | 0.2203 | 0.2342 |
No log | 15.0 | 375 | 1.5604 | 0.58 | 0.5872 | 3.8633 | 0.58 | 0.5762 | 0.2089 | 0.1866 |
No log | 16.0 | 400 | 1.6440 | 0.585 | 0.6042 | 4.2508 | 0.585 | 0.5940 | 0.2253 | 0.2182 |
No log | 17.0 | 425 | 1.6117 | 0.5825 | 0.6057 | 4.2511 | 0.5825 | 0.5732 | 0.2299 | 0.1947 |
No log | 18.0 | 450 | 1.5597 | 0.605 | 0.5732 | 4.4755 | 0.605 | 0.6028 | 0.2101 | 0.1721 |
No log | 19.0 | 475 | 1.4177 | 0.6325 | 0.5429 | 3.4771 | 0.6325 | 0.6319 | 0.1930 | 0.1786 |
0.5354 | 20.0 | 500 | 1.5745 | 0.56 | 0.6076 | 3.6058 | 0.56 | 0.5643 | 0.2265 | 0.1898 |
0.5354 | 21.0 | 525 | 1.4907 | 0.6125 | 0.5682 | 3.9837 | 0.6125 | 0.6184 | 0.1981 | 0.1810 |
0.5354 | 22.0 | 550 | 1.4494 | 0.5925 | 0.5677 | 3.2864 | 0.5925 | 0.5906 | 0.2187 | 0.1670 |
0.5354 | 23.0 | 575 | 1.5608 | 0.62 | 0.5830 | 4.0132 | 0.62 | 0.6029 | 0.2286 | 0.1808 |
0.5354 | 24.0 | 600 | 1.5038 | 0.58 | 0.5957 | 3.6519 | 0.58 | 0.5956 | 0.2321 | 0.1879 |
0.5354 | 25.0 | 625 | 1.4094 | 0.615 | 0.5554 | 3.0313 | 0.615 | 0.6102 | 0.2180 | 0.1689 |
0.5354 | 26.0 | 650 | 1.4485 | 0.62 | 0.5712 | 3.3326 | 0.62 | 0.6181 | 0.2138 | 0.1729 |
0.5354 | 27.0 | 675 | 1.4156 | 0.6225 | 0.5621 | 3.2257 | 0.6225 | 0.6239 | 0.2158 | 0.1718 |
0.5354 | 28.0 | 700 | 1.3729 | 0.6275 | 0.5476 | 3.1300 | 0.6275 | 0.6285 | 0.2078 | 0.1620 |
0.5354 | 29.0 | 725 | 1.3671 | 0.6275 | 0.5337 | 3.4625 | 0.6275 | 0.6285 | 0.2177 | 0.1586 |
0.5354 | 30.0 | 750 | 1.3263 | 0.63 | 0.5380 | 3.2177 | 0.63 | 0.6338 | 0.2063 | 0.1577 |
0.5354 | 31.0 | 775 | 1.2991 | 0.6225 | 0.5223 | 3.0482 | 0.6225 | 0.6238 | 0.1940 | 0.1525 |
0.5354 | 32.0 | 800 | 1.3227 | 0.6325 | 0.5333 | 2.9622 | 0.6325 | 0.6351 | 0.1906 | 0.1554 |
0.5354 | 33.0 | 825 | 1.3077 | 0.63 | 0.5298 | 3.2060 | 0.63 | 0.6338 | 0.1933 | 0.1555 |
0.5354 | 34.0 | 850 | 1.3036 | 0.6225 | 0.5269 | 3.0431 | 0.6225 | 0.6242 | 0.1996 | 0.1535 |
0.5354 | 35.0 | 875 | 1.3057 | 0.6275 | 0.5263 | 2.9651 | 0.6275 | 0.6291 | 0.2023 | 0.1538 |
0.5354 | 36.0 | 900 | 1.2992 | 0.6275 | 0.5247 | 2.9748 | 0.6275 | 0.6289 | 0.1961 | 0.1518 |
0.5354 | 37.0 | 925 | 1.3001 | 0.6325 | 0.5252 | 2.9784 | 0.6325 | 0.6347 | 0.1978 | 0.1531 |
0.5354 | 38.0 | 950 | 1.2990 | 0.63 | 0.5229 | 2.9014 | 0.63 | 0.6327 | 0.1981 | 0.1524 |
0.5354 | 39.0 | 975 | 1.2995 | 0.6325 | 0.5246 | 2.9776 | 0.6325 | 0.6354 | 0.1946 | 0.1533 |
0.0336 | 40.0 | 1000 | 1.2945 | 0.6275 | 0.5226 | 2.9029 | 0.6275 | 0.6302 | 0.1965 | 0.1523 |
0.0336 | 41.0 | 1025 | 1.3023 | 0.63 | 0.5247 | 3.0515 | 0.63 | 0.6341 | 0.2044 | 0.1534 |
0.0336 | 42.0 | 1050 | 1.2990 | 0.635 | 0.5239 | 3.0673 | 0.635 | 0.6381 | 0.1952 | 0.1516 |
0.0336 | 43.0 | 1075 | 1.2962 | 0.635 | 0.5213 | 3.0585 | 0.635 | 0.6378 | 0.2055 | 0.1523 |
0.0336 | 44.0 | 1100 | 1.2991 | 0.625 | 0.5229 | 2.9801 | 0.625 | 0.6278 | 0.1954 | 0.1532 |
0.0336 | 45.0 | 1125 | 1.2949 | 0.6375 | 0.5222 | 3.0564 | 0.6375 | 0.6419 | 0.2027 | 0.1519 |
0.0336 | 46.0 | 1150 | 1.2989 | 0.6275 | 0.5228 | 3.0737 | 0.6275 | 0.6308 | 0.2075 | 0.1529 |
0.0336 | 47.0 | 1175 | 1.2902 | 0.6325 | 0.5201 | 3.0606 | 0.6325 | 0.6360 | 0.2099 | 0.1516 |
0.0336 | 48.0 | 1200 | 1.2971 | 0.6275 | 0.5217 | 3.0829 | 0.6275 | 0.6305 | 0.1882 | 0.1518 |
0.0336 | 49.0 | 1225 | 1.2913 | 0.63 | 0.5212 | 2.9853 | 0.63 | 0.6332 | 0.1928 | 0.1524 |
0.0336 | 50.0 | 1250 | 1.2917 | 0.63 | 0.5205 | 2.9850 | 0.63 | 0.6336 | 0.1910 | 0.1518 |
0.0336 | 51.0 | 1275 | 1.2928 | 0.63 | 0.5208 | 3.0579 | 0.63 | 0.6330 | 0.2020 | 0.1528 |
0.0336 | 52.0 | 1300 | 1.2941 | 0.635 | 0.5205 | 3.0647 | 0.635 | 0.6383 | 0.1919 | 0.1515 |
0.0336 | 53.0 | 1325 | 1.2930 | 0.635 | 0.5207 | 3.0637 | 0.635 | 0.6384 | 0.1868 | 0.1518 |
0.0336 | 54.0 | 1350 | 1.2918 | 0.63 | 0.5203 | 3.0628 | 0.63 | 0.6335 | 0.1986 | 0.1519 |
0.0336 | 55.0 | 1375 | 1.2894 | 0.635 | 0.5198 | 2.9874 | 0.635 | 0.6383 | 0.2026 | 0.1514 |
0.0336 | 56.0 | 1400 | 1.2913 | 0.63 | 0.5203 | 3.0691 | 0.63 | 0.6337 | 0.2045 | 0.1519 |
0.0336 | 57.0 | 1425 | 1.2923 | 0.6325 | 0.5205 | 2.9869 | 0.6325 | 0.6358 | 0.1962 | 0.1522 |
0.0336 | 58.0 | 1450 | 1.2927 | 0.6375 | 0.5199 | 3.0734 | 0.6375 | 0.6408 | 0.1905 | 0.1514 |
0.0336 | 59.0 | 1475 | 1.2931 | 0.6325 | 0.5204 | 3.0607 | 0.6325 | 0.6353 | 0.1980 | 0.1520 |
0.0236 | 60.0 | 1500 | 1.2911 | 0.6325 | 0.5199 | 3.0664 | 0.6325 | 0.6359 | 0.1875 | 0.1517 |
0.0236 | 61.0 | 1525 | 1.2901 | 0.635 | 0.5195 | 2.9877 | 0.635 | 0.6386 | 0.1907 | 0.1516 |
0.0236 | 62.0 | 1550 | 1.2913 | 0.635 | 0.5192 | 3.0655 | 0.635 | 0.6383 | 0.1971 | 0.1515 |
0.0236 | 63.0 | 1575 | 1.2920 | 0.635 | 0.5201 | 3.0044 | 0.635 | 0.6379 | 0.1991 | 0.1514 |
0.0236 | 64.0 | 1600 | 1.2911 | 0.635 | 0.5192 | 3.0654 | 0.635 | 0.6380 | 0.1848 | 0.1509 |
0.0236 | 65.0 | 1625 | 1.2924 | 0.635 | 0.5196 | 3.1438 | 0.635 | 0.6379 | 0.1969 | 0.1515 |
0.0236 | 66.0 | 1650 | 1.2901 | 0.635 | 0.5191 | 2.9928 | 0.635 | 0.6392 | 0.1978 | 0.1507 |
0.0236 | 67.0 | 1675 | 1.2911 | 0.6325 | 0.5189 | 3.0662 | 0.6325 | 0.6359 | 0.1896 | 0.1517 |
0.0236 | 68.0 | 1700 | 1.2911 | 0.6375 | 0.5193 | 2.9932 | 0.6375 | 0.6404 | 0.2017 | 0.1507 |
0.0236 | 69.0 | 1725 | 1.2893 | 0.635 | 0.5189 | 2.9907 | 0.635 | 0.6391 | 0.1951 | 0.1511 |
0.0236 | 70.0 | 1750 | 1.2913 | 0.6325 | 0.5195 | 2.9919 | 0.6325 | 0.6362 | 0.1955 | 0.1513 |
0.0236 | 71.0 | 1775 | 1.2899 | 0.635 | 0.5188 | 2.9899 | 0.635 | 0.6386 | 0.2049 | 0.1511 |
0.0236 | 72.0 | 1800 | 1.2912 | 0.635 | 0.5192 | 2.9914 | 0.635 | 0.6379 | 0.1924 | 0.1513 |
0.0236 | 73.0 | 1825 | 1.2898 | 0.6325 | 0.5188 | 2.9901 | 0.6325 | 0.6367 | 0.2059 | 0.1511 |
0.0236 | 74.0 | 1850 | 1.2902 | 0.635 | 0.5190 | 2.9918 | 0.635 | 0.6391 | 0.2069 | 0.1511 |
0.0236 | 75.0 | 1875 | 1.2904 | 0.635 | 0.5191 | 2.9916 | 0.635 | 0.6391 | 0.1969 | 0.1511 |
0.0236 | 76.0 | 1900 | 1.2905 | 0.635 | 0.5191 | 2.9899 | 0.635 | 0.6391 | 0.1969 | 0.1512 |
0.0236 | 77.0 | 1925 | 1.2904 | 0.635 | 0.5191 | 2.9917 | 0.635 | 0.6391 | 0.1926 | 0.1511 |
0.0236 | 78.0 | 1950 | 1.2899 | 0.635 | 0.5188 | 2.9909 | 0.635 | 0.6391 | 0.2010 | 0.1510 |
0.0236 | 79.0 | 1975 | 1.2900 | 0.635 | 0.5188 | 2.9908 | 0.635 | 0.6391 | 0.2034 | 0.1511 |
0.0233 | 80.0 | 2000 | 1.2900 | 0.635 | 0.5188 | 2.9910 | 0.635 | 0.6391 | 0.1967 | 0.1511 |
0.0233 | 81.0 | 2025 | 1.2900 | 0.635 | 0.5188 | 2.9911 | 0.635 | 0.6391 | 0.2002 | 0.1511 |
0.0233 | 82.0 | 2050 | 1.2901 | 0.635 | 0.5189 | 2.9909 | 0.635 | 0.6391 | 0.1993 | 0.1511 |
0.0233 | 83.0 | 2075 | 1.2900 | 0.635 | 0.5188 | 2.9906 | 0.635 | 0.6391 | 0.1937 | 0.1511 |
0.0233 | 84.0 | 2100 | 1.2901 | 0.635 | 0.5189 | 2.9917 | 0.635 | 0.6391 | 0.2026 | 0.1511 |
0.0233 | 85.0 | 2125 | 1.2899 | 0.635 | 0.5188 | 2.9905 | 0.635 | 0.6391 | 0.1993 | 0.1512 |
0.0233 | 86.0 | 2150 | 1.2897 | 0.635 | 0.5187 | 2.9906 | 0.635 | 0.6391 | 0.1976 | 0.1511 |
0.0233 | 87.0 | 2175 | 1.2899 | 0.635 | 0.5188 | 2.9905 | 0.635 | 0.6391 | 0.1980 | 0.1511 |
0.0233 | 88.0 | 2200 | 1.2897 | 0.635 | 0.5187 | 2.9911 | 0.635 | 0.6391 | 0.1957 | 0.1511 |
0.0233 | 89.0 | 2225 | 1.2899 | 0.635 | 0.5187 | 2.9910 | 0.635 | 0.6391 | 0.1970 | 0.1511 |
0.0233 | 90.0 | 2250 | 1.2898 | 0.635 | 0.5187 | 2.9905 | 0.635 | 0.6391 | 0.1988 | 0.1512 |
0.0233 | 91.0 | 2275 | 1.2897 | 0.635 | 0.5187 | 2.9908 | 0.635 | 0.6391 | 0.1961 | 0.1511 |
0.0233 | 92.0 | 2300 | 1.2898 | 0.635 | 0.5187 | 2.9908 | 0.635 | 0.6391 | 0.1966 | 0.1511 |
0.0233 | 93.0 | 2325 | 1.2897 | 0.635 | 0.5186 | 2.9908 | 0.635 | 0.6391 | 0.1984 | 0.1511 |
0.0233 | 94.0 | 2350 | 1.2898 | 0.635 | 0.5187 | 2.9907 | 0.635 | 0.6391 | 0.2009 | 0.1511 |
0.0233 | 95.0 | 2375 | 1.2897 | 0.635 | 0.5186 | 2.9908 | 0.635 | 0.6391 | 0.2023 | 0.1511 |
0.0233 | 96.0 | 2400 | 1.2897 | 0.635 | 0.5186 | 2.9908 | 0.635 | 0.6391 | 0.1985 | 0.1511 |
0.0233 | 97.0 | 2425 | 1.2897 | 0.635 | 0.5186 | 2.9908 | 0.635 | 0.6391 | 0.1984 | 0.1511 |
0.0233 | 98.0 | 2450 | 1.2897 | 0.635 | 0.5186 | 2.9908 | 0.635 | 0.6391 | 0.1985 | 0.1511 |
0.0233 | 99.0 | 2475 | 1.2897 | 0.635 | 0.5186 | 2.9909 | 0.635 | 0.6391 | 0.1984 | 0.1511 |
0.0232 | 100.0 | 2500 | 1.2897 | 0.635 | 0.5186 | 2.9908 | 0.635 | 0.6391 | 0.1984 | 0.1511 |
Framework versions
- Transformers 4.28.0.dev0
- Pytorch 1.12.1+cu113
- Datasets 2.12.0
- Tokenizers 0.12.1