<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. -->
vit-small_tobacco3482_kd_CE
This model is a fine-tuned version of WinKawaks/vit-small-patch16-224 on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.7692
- Accuracy: 0.845
- Brier Loss: 0.2469
- Nll: 1.1078
- F1 Micro: 0.845
- F1 Macro: 0.8517
- Ece: 0.1239
- Aurc: 0.0373
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 128
- eval_batch_size: 128
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 100
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | Brier Loss | Nll | F1 Micro | F1 Macro | Ece | Aurc |
---|---|---|---|---|---|---|---|---|---|---|
No log | 1.0 | 7 | 2.2384 | 0.215 | 0.8750 | 5.2607 | 0.2150 | 0.1263 | 0.2515 | 0.6887 |
No log | 2.0 | 14 | 1.8043 | 0.395 | 0.7402 | 3.6938 | 0.395 | 0.2230 | 0.2859 | 0.4088 |
No log | 3.0 | 21 | 1.2581 | 0.61 | 0.5613 | 2.0209 | 0.61 | 0.5557 | 0.2634 | 0.2084 |
No log | 4.0 | 28 | 0.8820 | 0.7 | 0.4017 | 1.7039 | 0.7 | 0.6574 | 0.2397 | 0.1123 |
No log | 5.0 | 35 | 0.8338 | 0.74 | 0.3807 | 1.7427 | 0.74 | 0.7425 | 0.2155 | 0.1001 |
No log | 6.0 | 42 | 0.7026 | 0.775 | 0.3202 | 1.4789 | 0.775 | 0.7666 | 0.1781 | 0.0771 |
No log | 7.0 | 49 | 0.7935 | 0.77 | 0.3635 | 1.5766 | 0.7700 | 0.7840 | 0.2029 | 0.0857 |
No log | 8.0 | 56 | 0.6819 | 0.8 | 0.3047 | 1.3800 | 0.8000 | 0.7987 | 0.1758 | 0.0738 |
No log | 9.0 | 63 | 0.7826 | 0.775 | 0.3434 | 1.5345 | 0.775 | 0.7888 | 0.1910 | 0.0807 |
No log | 10.0 | 70 | 0.8752 | 0.775 | 0.3392 | 1.5110 | 0.775 | 0.7813 | 0.1731 | 0.0737 |
No log | 11.0 | 77 | 1.0440 | 0.72 | 0.4285 | 1.7284 | 0.72 | 0.7241 | 0.2416 | 0.1094 |
No log | 12.0 | 84 | 0.8109 | 0.785 | 0.3411 | 1.3933 | 0.785 | 0.7806 | 0.1694 | 0.0690 |
No log | 13.0 | 91 | 0.9980 | 0.76 | 0.3852 | 1.5143 | 0.76 | 0.6919 | 0.1917 | 0.0892 |
No log | 14.0 | 98 | 1.0056 | 0.775 | 0.3773 | 1.4735 | 0.775 | 0.7733 | 0.2060 | 0.0871 |
No log | 15.0 | 105 | 1.2081 | 0.75 | 0.4260 | 1.5653 | 0.75 | 0.7373 | 0.2110 | 0.0983 |
No log | 16.0 | 112 | 1.1463 | 0.78 | 0.3781 | 1.5472 | 0.78 | 0.7906 | 0.1736 | 0.1004 |
No log | 17.0 | 119 | 0.9384 | 0.825 | 0.2973 | 1.5527 | 0.825 | 0.8334 | 0.1529 | 0.0648 |
No log | 18.0 | 126 | 0.9258 | 0.785 | 0.3464 | 1.2875 | 0.785 | 0.7832 | 0.1694 | 0.0562 |
No log | 19.0 | 133 | 1.1667 | 0.8 | 0.3406 | 1.8919 | 0.8000 | 0.8038 | 0.1518 | 0.0705 |
No log | 20.0 | 140 | 0.9351 | 0.81 | 0.3116 | 1.4283 | 0.81 | 0.8084 | 0.1532 | 0.0628 |
No log | 21.0 | 147 | 1.2016 | 0.77 | 0.4040 | 1.2958 | 0.7700 | 0.7606 | 0.2051 | 0.0827 |
No log | 22.0 | 154 | 1.3592 | 0.765 | 0.4040 | 1.6059 | 0.765 | 0.7645 | 0.1941 | 0.1163 |
No log | 23.0 | 161 | 0.9921 | 0.805 | 0.3374 | 1.6304 | 0.805 | 0.8029 | 0.1710 | 0.0558 |
No log | 24.0 | 168 | 0.8805 | 0.83 | 0.2953 | 1.1996 | 0.83 | 0.8189 | 0.1547 | 0.0611 |
No log | 25.0 | 175 | 0.9926 | 0.815 | 0.3148 | 1.2949 | 0.815 | 0.8050 | 0.1638 | 0.0606 |
No log | 26.0 | 182 | 1.0838 | 0.83 | 0.3171 | 1.3327 | 0.83 | 0.8265 | 0.1632 | 0.0732 |
No log | 27.0 | 189 | 1.1845 | 0.8 | 0.3382 | 1.3456 | 0.8000 | 0.7942 | 0.1814 | 0.0798 |
No log | 28.0 | 196 | 0.9800 | 0.83 | 0.2999 | 1.3172 | 0.83 | 0.8275 | 0.1563 | 0.0798 |
No log | 29.0 | 203 | 0.9653 | 0.85 | 0.2724 | 1.3303 | 0.85 | 0.8531 | 0.1415 | 0.0556 |
No log | 30.0 | 210 | 0.9896 | 0.85 | 0.2837 | 1.3282 | 0.85 | 0.8494 | 0.1373 | 0.0596 |
No log | 31.0 | 217 | 0.9196 | 0.84 | 0.2844 | 1.2157 | 0.8400 | 0.8437 | 0.1516 | 0.0508 |
No log | 32.0 | 224 | 0.9701 | 0.83 | 0.3062 | 1.2264 | 0.83 | 0.8364 | 0.1608 | 0.0554 |
No log | 33.0 | 231 | 0.7464 | 0.865 | 0.2353 | 1.1321 | 0.865 | 0.8613 | 0.1265 | 0.0432 |
No log | 34.0 | 238 | 0.7593 | 0.865 | 0.2367 | 1.1160 | 0.865 | 0.8649 | 0.1322 | 0.0430 |
No log | 35.0 | 245 | 0.7450 | 0.855 | 0.2465 | 1.0615 | 0.855 | 0.8536 | 0.1279 | 0.0413 |
No log | 36.0 | 252 | 0.7389 | 0.845 | 0.2546 | 1.0563 | 0.845 | 0.8429 | 0.1266 | 0.0417 |
No log | 37.0 | 259 | 0.7332 | 0.845 | 0.2542 | 1.0549 | 0.845 | 0.8452 | 0.1293 | 0.0413 |
No log | 38.0 | 266 | 0.7328 | 0.85 | 0.2531 | 1.0554 | 0.85 | 0.8490 | 0.1331 | 0.0407 |
No log | 39.0 | 273 | 0.7342 | 0.85 | 0.2514 | 1.0558 | 0.85 | 0.8490 | 0.1339 | 0.0398 |
No log | 40.0 | 280 | 0.7367 | 0.855 | 0.2498 | 1.0564 | 0.855 | 0.8529 | 0.1362 | 0.0391 |
No log | 41.0 | 287 | 0.7395 | 0.855 | 0.2489 | 1.0574 | 0.855 | 0.8529 | 0.1307 | 0.0392 |
No log | 42.0 | 294 | 0.7412 | 0.855 | 0.2480 | 1.0598 | 0.855 | 0.8529 | 0.1237 | 0.0393 |
No log | 43.0 | 301 | 0.7434 | 0.855 | 0.2475 | 1.0635 | 0.855 | 0.8550 | 0.1161 | 0.0392 |
No log | 44.0 | 308 | 0.7453 | 0.855 | 0.2473 | 1.0725 | 0.855 | 0.8550 | 0.1237 | 0.0392 |
No log | 45.0 | 315 | 0.7462 | 0.855 | 0.2471 | 1.1225 | 0.855 | 0.8550 | 0.1205 | 0.0391 |
No log | 46.0 | 322 | 0.7471 | 0.855 | 0.2468 | 1.1219 | 0.855 | 0.8550 | 0.1155 | 0.0391 |
No log | 47.0 | 329 | 0.7481 | 0.85 | 0.2466 | 1.1213 | 0.85 | 0.8519 | 0.1283 | 0.0390 |
No log | 48.0 | 336 | 0.7492 | 0.85 | 0.2464 | 1.1207 | 0.85 | 0.8519 | 0.1334 | 0.0388 |
No log | 49.0 | 343 | 0.7504 | 0.85 | 0.2464 | 1.1203 | 0.85 | 0.8519 | 0.1379 | 0.0387 |
No log | 50.0 | 350 | 0.7515 | 0.85 | 0.2465 | 1.1201 | 0.85 | 0.8519 | 0.1267 | 0.0387 |
No log | 51.0 | 357 | 0.7523 | 0.85 | 0.2464 | 1.1198 | 0.85 | 0.8519 | 0.1265 | 0.0385 |
No log | 52.0 | 364 | 0.7532 | 0.85 | 0.2463 | 1.1194 | 0.85 | 0.8519 | 0.1201 | 0.0385 |
No log | 53.0 | 371 | 0.7534 | 0.855 | 0.2461 | 1.1189 | 0.855 | 0.8602 | 0.1266 | 0.0384 |
No log | 54.0 | 378 | 0.7542 | 0.855 | 0.2460 | 1.1185 | 0.855 | 0.8602 | 0.1279 | 0.0386 |
No log | 55.0 | 385 | 0.7547 | 0.855 | 0.2459 | 1.1180 | 0.855 | 0.8602 | 0.1332 | 0.0381 |
No log | 56.0 | 392 | 0.7556 | 0.855 | 0.2460 | 1.1176 | 0.855 | 0.8602 | 0.1256 | 0.0380 |
No log | 57.0 | 399 | 0.7564 | 0.855 | 0.2460 | 1.1171 | 0.855 | 0.8602 | 0.1252 | 0.0381 |
No log | 58.0 | 406 | 0.7571 | 0.855 | 0.2461 | 1.1166 | 0.855 | 0.8602 | 0.1231 | 0.0379 |
No log | 59.0 | 413 | 0.7581 | 0.855 | 0.2463 | 1.1162 | 0.855 | 0.8602 | 0.1295 | 0.0378 |
No log | 60.0 | 420 | 0.7588 | 0.855 | 0.2464 | 1.1159 | 0.855 | 0.8602 | 0.1224 | 0.0378 |
No log | 61.0 | 427 | 0.7594 | 0.855 | 0.2465 | 1.1155 | 0.855 | 0.8602 | 0.1226 | 0.0378 |
No log | 62.0 | 434 | 0.7598 | 0.855 | 0.2464 | 1.1152 | 0.855 | 0.8602 | 0.1231 | 0.0378 |
No log | 63.0 | 441 | 0.7605 | 0.855 | 0.2465 | 1.1149 | 0.855 | 0.8602 | 0.1231 | 0.0378 |
No log | 64.0 | 448 | 0.7610 | 0.855 | 0.2465 | 1.1144 | 0.855 | 0.8602 | 0.1222 | 0.0377 |
No log | 65.0 | 455 | 0.7618 | 0.855 | 0.2466 | 1.1140 | 0.855 | 0.8602 | 0.1229 | 0.0377 |
No log | 66.0 | 462 | 0.7625 | 0.855 | 0.2468 | 1.1137 | 0.855 | 0.8602 | 0.1317 | 0.0378 |
No log | 67.0 | 469 | 0.7630 | 0.855 | 0.2468 | 1.1133 | 0.855 | 0.8602 | 0.1317 | 0.0377 |
No log | 68.0 | 476 | 0.7633 | 0.855 | 0.2468 | 1.1130 | 0.855 | 0.8602 | 0.1317 | 0.0377 |
No log | 69.0 | 483 | 0.7636 | 0.855 | 0.2468 | 1.1127 | 0.855 | 0.8602 | 0.1318 | 0.0376 |
No log | 70.0 | 490 | 0.7640 | 0.855 | 0.2468 | 1.1124 | 0.855 | 0.8602 | 0.1319 | 0.0376 |
No log | 71.0 | 497 | 0.7645 | 0.85 | 0.2468 | 1.1120 | 0.85 | 0.8548 | 0.1280 | 0.0375 |
0.1221 | 72.0 | 504 | 0.7649 | 0.85 | 0.2468 | 1.1116 | 0.85 | 0.8548 | 0.1293 | 0.0375 |
0.1221 | 73.0 | 511 | 0.7653 | 0.85 | 0.2469 | 1.1113 | 0.85 | 0.8548 | 0.1293 | 0.0374 |
0.1221 | 74.0 | 518 | 0.7656 | 0.85 | 0.2469 | 1.1111 | 0.85 | 0.8548 | 0.1293 | 0.0373 |
0.1221 | 75.0 | 525 | 0.7659 | 0.85 | 0.2469 | 1.1108 | 0.85 | 0.8548 | 0.1208 | 0.0373 |
0.1221 | 76.0 | 532 | 0.7662 | 0.85 | 0.2469 | 1.1106 | 0.85 | 0.8548 | 0.1207 | 0.0374 |
0.1221 | 77.0 | 539 | 0.7664 | 0.85 | 0.2469 | 1.1104 | 0.85 | 0.8548 | 0.1207 | 0.0374 |
0.1221 | 78.0 | 546 | 0.7665 | 0.85 | 0.2469 | 1.1102 | 0.85 | 0.8548 | 0.1301 | 0.0375 |
0.1221 | 79.0 | 553 | 0.7667 | 0.85 | 0.2469 | 1.1100 | 0.85 | 0.8548 | 0.1301 | 0.0375 |
0.1221 | 80.0 | 560 | 0.7668 | 0.85 | 0.2468 | 1.1097 | 0.85 | 0.8548 | 0.1301 | 0.0374 |
0.1221 | 81.0 | 567 | 0.7669 | 0.85 | 0.2468 | 1.1095 | 0.85 | 0.8548 | 0.1300 | 0.0374 |
0.1221 | 82.0 | 574 | 0.7672 | 0.85 | 0.2468 | 1.1094 | 0.85 | 0.8548 | 0.1301 | 0.0374 |
0.1221 | 83.0 | 581 | 0.7674 | 0.85 | 0.2469 | 1.1092 | 0.85 | 0.8548 | 0.1301 | 0.0374 |
0.1221 | 84.0 | 588 | 0.7678 | 0.85 | 0.2469 | 1.1090 | 0.85 | 0.8548 | 0.1302 | 0.0374 |
0.1221 | 85.0 | 595 | 0.7678 | 0.85 | 0.2468 | 1.1089 | 0.85 | 0.8548 | 0.1284 | 0.0373 |
0.1221 | 86.0 | 602 | 0.7679 | 0.845 | 0.2468 | 1.1087 | 0.845 | 0.8517 | 0.1243 | 0.0373 |
0.1221 | 87.0 | 609 | 0.7681 | 0.845 | 0.2468 | 1.1086 | 0.845 | 0.8517 | 0.1244 | 0.0373 |
0.1221 | 88.0 | 616 | 0.7683 | 0.845 | 0.2468 | 1.1084 | 0.845 | 0.8517 | 0.1244 | 0.0373 |
0.1221 | 89.0 | 623 | 0.7685 | 0.845 | 0.2468 | 1.1083 | 0.845 | 0.8517 | 0.1243 | 0.0373 |
0.1221 | 90.0 | 630 | 0.7687 | 0.845 | 0.2469 | 1.1083 | 0.845 | 0.8517 | 0.1239 | 0.0372 |
0.1221 | 91.0 | 637 | 0.7688 | 0.845 | 0.2469 | 1.1082 | 0.845 | 0.8517 | 0.1239 | 0.0372 |
0.1221 | 92.0 | 644 | 0.7689 | 0.845 | 0.2469 | 1.1082 | 0.845 | 0.8517 | 0.1239 | 0.0373 |
0.1221 | 93.0 | 651 | 0.7690 | 0.845 | 0.2469 | 1.1081 | 0.845 | 0.8517 | 0.1239 | 0.0373 |
0.1221 | 94.0 | 658 | 0.7690 | 0.845 | 0.2469 | 1.1080 | 0.845 | 0.8517 | 0.1239 | 0.0373 |
0.1221 | 95.0 | 665 | 0.7691 | 0.845 | 0.2469 | 1.1080 | 0.845 | 0.8517 | 0.1239 | 0.0373 |
0.1221 | 96.0 | 672 | 0.7692 | 0.845 | 0.2469 | 1.1079 | 0.845 | 0.8517 | 0.1239 | 0.0373 |
0.1221 | 97.0 | 679 | 0.7692 | 0.845 | 0.2469 | 1.1079 | 0.845 | 0.8517 | 0.1239 | 0.0373 |
0.1221 | 98.0 | 686 | 0.7692 | 0.845 | 0.2469 | 1.1078 | 0.845 | 0.8517 | 0.1239 | 0.0373 |
0.1221 | 99.0 | 693 | 0.7692 | 0.845 | 0.2469 | 1.1078 | 0.845 | 0.8517 | 0.1239 | 0.0373 |
0.1221 | 100.0 | 700 | 0.7692 | 0.845 | 0.2469 | 1.1078 | 0.845 | 0.8517 | 0.1239 | 0.0373 |
Framework versions
- Transformers 4.26.1
- Pytorch 1.13.1.post200
- Datasets 2.9.0
- Tokenizers 0.13.2