<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. -->
vit-tiny_tobacco3482_simkd_CEKD_tNone_aNone_tNone_gNone
This model is a fine-tuned version of WinKawaks/vit-tiny-patch16-224 on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.0396
- Accuracy: 0.735
- Brier Loss: 0.7729
- Nll: 1.4473
- F1 Micro: 0.735
- F1 Macro: 0.6948
- Ece: 0.5886
- Aurc: 0.0947
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 100
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | Brier Loss | Nll | F1 Micro | F1 Macro | Ece | Aurc |
---|---|---|---|---|---|---|---|---|---|---|
No log | 1.0 | 25 | 0.0553 | 0.085 | 0.8991 | 5.2518 | 0.085 | 0.0595 | 0.1614 | 0.8792 |
No log | 2.0 | 50 | 0.0488 | 0.035 | 0.9007 | 7.4288 | 0.035 | 0.0069 | 0.1218 | 0.9410 |
No log | 3.0 | 75 | 0.0481 | 0.045 | 0.8999 | 6.0525 | 0.045 | 0.0087 | 0.1349 | 0.9308 |
No log | 4.0 | 100 | 0.0478 | 0.05 | 0.8991 | 5.6444 | 0.0500 | 0.0149 | 0.1378 | 0.9211 |
No log | 5.0 | 125 | 0.0475 | 0.14 | 0.8981 | 5.8239 | 0.14 | 0.0863 | 0.1987 | 0.8452 |
No log | 6.0 | 150 | 0.0471 | 0.305 | 0.8964 | 5.7469 | 0.305 | 0.1652 | 0.3097 | 0.5016 |
No log | 7.0 | 175 | 0.0466 | 0.305 | 0.8950 | 4.9568 | 0.305 | 0.1899 | 0.3035 | 0.5165 |
No log | 8.0 | 200 | 0.0461 | 0.315 | 0.8931 | 4.8214 | 0.315 | 0.1811 | 0.3152 | 0.4687 |
No log | 9.0 | 225 | 0.0455 | 0.315 | 0.8907 | 4.7406 | 0.315 | 0.2028 | 0.3225 | 0.4671 |
No log | 10.0 | 250 | 0.0449 | 0.35 | 0.8862 | 4.7538 | 0.35 | 0.1972 | 0.3364 | 0.4263 |
No log | 11.0 | 275 | 0.0443 | 0.37 | 0.8793 | 4.6283 | 0.37 | 0.2106 | 0.3455 | 0.4084 |
No log | 12.0 | 300 | 0.0438 | 0.4 | 0.8731 | 3.9664 | 0.4000 | 0.2443 | 0.3685 | 0.3731 |
No log | 13.0 | 325 | 0.0434 | 0.425 | 0.8628 | 3.9702 | 0.425 | 0.2574 | 0.3842 | 0.3601 |
No log | 14.0 | 350 | 0.0430 | 0.465 | 0.8586 | 3.8630 | 0.465 | 0.3226 | 0.4112 | 0.3024 |
No log | 15.0 | 375 | 0.0428 | 0.46 | 0.8488 | 3.9046 | 0.46 | 0.2693 | 0.4082 | 0.2854 |
No log | 16.0 | 400 | 0.0424 | 0.475 | 0.8430 | 3.2916 | 0.4750 | 0.2802 | 0.4183 | 0.2626 |
No log | 17.0 | 425 | 0.0421 | 0.555 | 0.8439 | 2.7780 | 0.555 | 0.4109 | 0.4760 | 0.2123 |
No log | 18.0 | 450 | 0.0418 | 0.575 | 0.8317 | 2.8629 | 0.575 | 0.4399 | 0.4869 | 0.2123 |
No log | 19.0 | 475 | 0.0415 | 0.665 | 0.8329 | 2.5145 | 0.665 | 0.5077 | 0.5655 | 0.1361 |
0.0491 | 20.0 | 500 | 0.0412 | 0.635 | 0.8121 | 2.7489 | 0.635 | 0.5155 | 0.5235 | 0.1686 |
0.0491 | 21.0 | 525 | 0.0410 | 0.655 | 0.8221 | 1.7853 | 0.655 | 0.5182 | 0.5509 | 0.1545 |
0.0491 | 22.0 | 550 | 0.0406 | 0.685 | 0.8045 | 1.5894 | 0.685 | 0.5486 | 0.5627 | 0.1305 |
0.0491 | 23.0 | 575 | 0.0405 | 0.68 | 0.7984 | 1.7241 | 0.68 | 0.5489 | 0.5545 | 0.1296 |
0.0491 | 24.0 | 600 | 0.0402 | 0.725 | 0.7959 | 1.5667 | 0.7250 | 0.6156 | 0.5926 | 0.1055 |
0.0491 | 25.0 | 625 | 0.0402 | 0.68 | 0.7927 | 1.4334 | 0.68 | 0.5853 | 0.5453 | 0.1239 |
0.0491 | 26.0 | 650 | 0.0401 | 0.705 | 0.7808 | 1.8114 | 0.705 | 0.5856 | 0.5735 | 0.1109 |
0.0491 | 27.0 | 675 | 0.0399 | 0.71 | 0.7859 | 1.6101 | 0.7100 | 0.6176 | 0.5679 | 0.1034 |
0.0491 | 28.0 | 700 | 0.0399 | 0.715 | 0.7808 | 1.3423 | 0.715 | 0.6612 | 0.5582 | 0.1130 |
0.0491 | 29.0 | 725 | 0.0398 | 0.705 | 0.7789 | 1.3921 | 0.705 | 0.6477 | 0.5615 | 0.1175 |
0.0491 | 30.0 | 750 | 0.0397 | 0.73 | 0.7767 | 1.5801 | 0.7300 | 0.6758 | 0.5741 | 0.1069 |
0.0491 | 31.0 | 775 | 0.0397 | 0.72 | 0.7774 | 1.3193 | 0.72 | 0.6653 | 0.5790 | 0.1004 |
0.0491 | 32.0 | 800 | 0.0396 | 0.745 | 0.7729 | 1.4864 | 0.745 | 0.6931 | 0.5941 | 0.0933 |
0.0491 | 33.0 | 825 | 0.0396 | 0.74 | 0.7736 | 1.5161 | 0.74 | 0.6901 | 0.5828 | 0.0934 |
0.0491 | 34.0 | 850 | 0.0396 | 0.745 | 0.7754 | 1.5432 | 0.745 | 0.6963 | 0.5911 | 0.0857 |
0.0491 | 35.0 | 875 | 0.0396 | 0.74 | 0.7744 | 1.4773 | 0.74 | 0.6936 | 0.5966 | 0.0896 |
0.0491 | 36.0 | 900 | 0.0397 | 0.715 | 0.7762 | 1.3769 | 0.715 | 0.6827 | 0.5675 | 0.1048 |
0.0491 | 37.0 | 925 | 0.0396 | 0.72 | 0.7744 | 1.3882 | 0.72 | 0.6780 | 0.5689 | 0.0970 |
0.0491 | 38.0 | 950 | 0.0396 | 0.72 | 0.7762 | 1.4098 | 0.72 | 0.6874 | 0.5701 | 0.1016 |
0.0491 | 39.0 | 975 | 0.0395 | 0.74 | 0.7728 | 1.3890 | 0.74 | 0.6894 | 0.5861 | 0.0902 |
0.0386 | 40.0 | 1000 | 0.0396 | 0.74 | 0.7724 | 1.5265 | 0.74 | 0.6936 | 0.5906 | 0.0881 |
0.0386 | 41.0 | 1025 | 0.0396 | 0.725 | 0.7730 | 1.3516 | 0.7250 | 0.6768 | 0.5784 | 0.0942 |
0.0386 | 42.0 | 1050 | 0.0396 | 0.73 | 0.7728 | 1.3633 | 0.7300 | 0.6847 | 0.5899 | 0.0945 |
0.0386 | 43.0 | 1075 | 0.0396 | 0.735 | 0.7730 | 1.3670 | 0.735 | 0.6874 | 0.5830 | 0.0940 |
0.0386 | 44.0 | 1100 | 0.0395 | 0.73 | 0.7727 | 1.4707 | 0.7300 | 0.6850 | 0.5914 | 0.0930 |
0.0386 | 45.0 | 1125 | 0.0396 | 0.725 | 0.7721 | 1.4269 | 0.7250 | 0.6810 | 0.5770 | 0.0934 |
0.0386 | 46.0 | 1150 | 0.0396 | 0.72 | 0.7730 | 1.3567 | 0.72 | 0.6793 | 0.5717 | 0.0976 |
0.0386 | 47.0 | 1175 | 0.0396 | 0.715 | 0.7731 | 1.3708 | 0.715 | 0.6757 | 0.5717 | 0.0974 |
0.0386 | 48.0 | 1200 | 0.0396 | 0.735 | 0.7724 | 1.4118 | 0.735 | 0.6874 | 0.5791 | 0.0923 |
0.0386 | 49.0 | 1225 | 0.0396 | 0.72 | 0.7729 | 1.3647 | 0.72 | 0.6837 | 0.5711 | 0.0965 |
0.0386 | 50.0 | 1250 | 0.0396 | 0.725 | 0.7727 | 1.3773 | 0.7250 | 0.6820 | 0.5740 | 0.0963 |
0.0386 | 51.0 | 1275 | 0.0396 | 0.73 | 0.7736 | 1.3286 | 0.7300 | 0.6847 | 0.5766 | 0.0939 |
0.0386 | 52.0 | 1300 | 0.0396 | 0.725 | 0.7732 | 1.3810 | 0.7250 | 0.6817 | 0.5830 | 0.0944 |
0.0386 | 53.0 | 1325 | 0.0396 | 0.725 | 0.7725 | 1.3568 | 0.7250 | 0.6820 | 0.5763 | 0.0948 |
0.0386 | 54.0 | 1350 | 0.0396 | 0.73 | 0.7731 | 1.3693 | 0.7300 | 0.6847 | 0.5768 | 0.0941 |
0.0386 | 55.0 | 1375 | 0.0396 | 0.745 | 0.7728 | 1.3631 | 0.745 | 0.7112 | 0.5842 | 0.0928 |
0.0386 | 56.0 | 1400 | 0.0396 | 0.715 | 0.7731 | 1.4175 | 0.715 | 0.6712 | 0.5600 | 0.0976 |
0.0386 | 57.0 | 1425 | 0.0396 | 0.725 | 0.7725 | 1.3668 | 0.7250 | 0.6929 | 0.5738 | 0.0962 |
0.0386 | 58.0 | 1450 | 0.0396 | 0.73 | 0.7734 | 1.3903 | 0.7300 | 0.6958 | 0.5868 | 0.0963 |
0.0386 | 59.0 | 1475 | 0.0396 | 0.725 | 0.7729 | 1.4120 | 0.7250 | 0.6765 | 0.5756 | 0.0945 |
0.0373 | 60.0 | 1500 | 0.0396 | 0.725 | 0.7732 | 1.3655 | 0.7250 | 0.6820 | 0.5754 | 0.0951 |
0.0373 | 61.0 | 1525 | 0.0396 | 0.745 | 0.7727 | 1.3676 | 0.745 | 0.7038 | 0.5913 | 0.0921 |
0.0373 | 62.0 | 1550 | 0.0396 | 0.72 | 0.7729 | 1.3629 | 0.72 | 0.6797 | 0.5762 | 0.0969 |
0.0373 | 63.0 | 1575 | 0.0396 | 0.725 | 0.7730 | 1.4242 | 0.7250 | 0.6865 | 0.5811 | 0.0950 |
0.0373 | 64.0 | 1600 | 0.0396 | 0.725 | 0.7735 | 1.3658 | 0.7250 | 0.6923 | 0.5750 | 0.0959 |
0.0373 | 65.0 | 1625 | 0.0396 | 0.73 | 0.7731 | 1.4296 | 0.7300 | 0.6958 | 0.5769 | 0.0954 |
0.0373 | 66.0 | 1650 | 0.0396 | 0.735 | 0.7727 | 1.4780 | 0.735 | 0.6980 | 0.5851 | 0.0938 |
0.0373 | 67.0 | 1675 | 0.0396 | 0.725 | 0.7725 | 1.3669 | 0.7250 | 0.6824 | 0.5715 | 0.0938 |
0.0373 | 68.0 | 1700 | 0.0396 | 0.725 | 0.7730 | 1.4327 | 0.7250 | 0.6804 | 0.5741 | 0.0940 |
0.0373 | 69.0 | 1725 | 0.0396 | 0.73 | 0.7728 | 1.3811 | 0.7300 | 0.6961 | 0.5806 | 0.0963 |
0.0373 | 70.0 | 1750 | 0.0396 | 0.735 | 0.7727 | 1.3812 | 0.735 | 0.7081 | 0.5765 | 0.0952 |
0.0373 | 71.0 | 1775 | 0.0396 | 0.73 | 0.7730 | 1.4263 | 0.7300 | 0.6961 | 0.5739 | 0.0953 |
0.0373 | 72.0 | 1800 | 0.0396 | 0.73 | 0.7731 | 1.4280 | 0.7300 | 0.6953 | 0.5803 | 0.0956 |
0.0373 | 73.0 | 1825 | 0.0396 | 0.735 | 0.7729 | 1.3676 | 0.735 | 0.6988 | 0.5889 | 0.0953 |
0.0373 | 74.0 | 1850 | 0.0396 | 0.735 | 0.7727 | 1.4358 | 0.735 | 0.6985 | 0.5828 | 0.0940 |
0.0373 | 75.0 | 1875 | 0.0396 | 0.735 | 0.7727 | 1.4306 | 0.735 | 0.6965 | 0.5786 | 0.0940 |
0.0373 | 76.0 | 1900 | 0.0396 | 0.73 | 0.7729 | 1.4343 | 0.7300 | 0.6957 | 0.5802 | 0.0958 |
0.0373 | 77.0 | 1925 | 0.0396 | 0.73 | 0.7726 | 1.4259 | 0.7300 | 0.6961 | 0.5795 | 0.0962 |
0.0373 | 78.0 | 1950 | 0.0396 | 0.74 | 0.7731 | 1.4246 | 0.74 | 0.7080 | 0.5879 | 0.0941 |
0.0373 | 79.0 | 1975 | 0.0396 | 0.735 | 0.7730 | 1.4414 | 0.735 | 0.6980 | 0.5914 | 0.0945 |
0.0372 | 80.0 | 2000 | 0.0396 | 0.74 | 0.7727 | 1.4285 | 0.74 | 0.7103 | 0.5915 | 0.0939 |
0.0372 | 81.0 | 2025 | 0.0396 | 0.735 | 0.7731 | 1.4379 | 0.735 | 0.6980 | 0.5826 | 0.0942 |
0.0372 | 82.0 | 2050 | 0.0396 | 0.735 | 0.7729 | 1.4308 | 0.735 | 0.6963 | 0.5827 | 0.0942 |
0.0372 | 83.0 | 2075 | 0.0396 | 0.735 | 0.7728 | 1.4329 | 0.735 | 0.6968 | 0.5896 | 0.0946 |
0.0372 | 84.0 | 2100 | 0.0396 | 0.735 | 0.7728 | 1.4343 | 0.735 | 0.6948 | 0.5889 | 0.0947 |
0.0372 | 85.0 | 2125 | 0.0396 | 0.735 | 0.7727 | 1.4320 | 0.735 | 0.6948 | 0.5988 | 0.0945 |
0.0372 | 86.0 | 2150 | 0.0396 | 0.735 | 0.7730 | 1.4366 | 0.735 | 0.6963 | 0.5883 | 0.0949 |
0.0372 | 87.0 | 2175 | 0.0396 | 0.73 | 0.7728 | 1.4825 | 0.7300 | 0.6888 | 0.5878 | 0.0945 |
0.0372 | 88.0 | 2200 | 0.0396 | 0.735 | 0.7731 | 1.4339 | 0.735 | 0.6945 | 0.5828 | 0.0948 |
0.0372 | 89.0 | 2225 | 0.0396 | 0.735 | 0.7729 | 1.4383 | 0.735 | 0.6948 | 0.5917 | 0.0946 |
0.0372 | 90.0 | 2250 | 0.0396 | 0.735 | 0.7729 | 1.4471 | 0.735 | 0.6948 | 0.5867 | 0.0944 |
0.0372 | 91.0 | 2275 | 0.0396 | 0.735 | 0.7728 | 1.4402 | 0.735 | 0.6948 | 0.5892 | 0.0946 |
0.0372 | 92.0 | 2300 | 0.0396 | 0.735 | 0.7729 | 1.4412 | 0.735 | 0.6948 | 0.5952 | 0.0948 |
0.0372 | 93.0 | 2325 | 0.0396 | 0.735 | 0.7729 | 1.4709 | 0.735 | 0.6948 | 0.5917 | 0.0948 |
0.0372 | 94.0 | 2350 | 0.0396 | 0.735 | 0.7728 | 1.4413 | 0.735 | 0.6948 | 0.5858 | 0.0947 |
0.0372 | 95.0 | 2375 | 0.0396 | 0.735 | 0.7729 | 1.4422 | 0.735 | 0.6948 | 0.5917 | 0.0946 |
0.0372 | 96.0 | 2400 | 0.0396 | 0.735 | 0.7729 | 1.4527 | 0.735 | 0.6948 | 0.5917 | 0.0946 |
0.0372 | 97.0 | 2425 | 0.0396 | 0.735 | 0.7729 | 1.4441 | 0.735 | 0.6948 | 0.5917 | 0.0946 |
0.0372 | 98.0 | 2450 | 0.0396 | 0.735 | 0.7729 | 1.4423 | 0.735 | 0.6948 | 0.5917 | 0.0946 |
0.0372 | 99.0 | 2475 | 0.0396 | 0.735 | 0.7729 | 1.4457 | 0.735 | 0.6948 | 0.5886 | 0.0948 |
0.0372 | 100.0 | 2500 | 0.0396 | 0.735 | 0.7729 | 1.4473 | 0.735 | 0.6948 | 0.5886 | 0.0947 |
Framework versions
- Transformers 4.26.1
- Pytorch 1.13.1.post200
- Datasets 2.9.0
- Tokenizers 0.13.2