<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. -->
vit-tiny_rvl_cdip_100_examples_per_class_simkd_CEKD_tNone_aNone_tNone_gNone
This model is a fine-tuned version of WinKawaks/vit-tiny-patch16-224 on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.0733
- Accuracy: 0.4825
- Brier Loss: 0.7791
- Nll: 2.6387
- F1 Micro: 0.4825
- F1 Macro: 0.4847
- Ece: 0.3427
- Aurc: 0.2765
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 100
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | Brier Loss | Nll | F1 Micro | F1 Macro | Ece | Aurc |
---|---|---|---|---|---|---|---|---|---|---|
No log | 1.0 | 25 | 0.0917 | 0.0675 | 0.9375 | 7.4169 | 0.0675 | 0.0426 | 0.1087 | 0.9278 |
No log | 2.0 | 50 | 0.0830 | 0.07 | 0.9373 | 7.3255 | 0.07 | 0.0326 | 0.1058 | 0.9149 |
No log | 3.0 | 75 | 0.0823 | 0.08 | 0.9370 | 7.0476 | 0.08 | 0.0333 | 0.1129 | 0.9007 |
No log | 4.0 | 100 | 0.0820 | 0.0825 | 0.9368 | 6.9259 | 0.0825 | 0.0333 | 0.1113 | 0.8914 |
No log | 5.0 | 125 | 0.0817 | 0.095 | 0.9366 | 7.1920 | 0.095 | 0.0593 | 0.1189 | 0.8845 |
No log | 6.0 | 150 | 0.0814 | 0.105 | 0.9363 | 7.6541 | 0.1050 | 0.0654 | 0.1364 | 0.8354 |
No log | 7.0 | 175 | 0.0810 | 0.1075 | 0.9361 | 7.5199 | 0.1075 | 0.0628 | 0.1235 | 0.8559 |
No log | 8.0 | 200 | 0.0806 | 0.1025 | 0.9357 | 7.3552 | 0.1025 | 0.0532 | 0.1230 | 0.8697 |
No log | 9.0 | 225 | 0.0801 | 0.1125 | 0.9353 | 6.2436 | 0.1125 | 0.0580 | 0.1291 | 0.8258 |
No log | 10.0 | 250 | 0.0797 | 0.0975 | 0.9342 | 6.1811 | 0.0975 | 0.0486 | 0.1217 | 0.8531 |
No log | 11.0 | 275 | 0.0792 | 0.11 | 0.9331 | 5.1954 | 0.11 | 0.0558 | 0.1330 | 0.8172 |
No log | 12.0 | 300 | 0.0789 | 0.1225 | 0.9310 | 5.0567 | 0.1225 | 0.0536 | 0.1428 | 0.7847 |
No log | 13.0 | 325 | 0.0785 | 0.14 | 0.9283 | 4.2411 | 0.14 | 0.1085 | 0.1561 | 0.7098 |
No log | 14.0 | 350 | 0.0780 | 0.1925 | 0.9234 | 3.9402 | 0.1925 | 0.1627 | 0.1956 | 0.6553 |
No log | 15.0 | 375 | 0.0780 | 0.2275 | 0.9186 | 4.2282 | 0.2275 | 0.1806 | 0.2151 | 0.5919 |
No log | 16.0 | 400 | 0.0770 | 0.2925 | 0.9082 | 3.5789 | 0.2925 | 0.2357 | 0.2602 | 0.5043 |
No log | 17.0 | 425 | 0.0766 | 0.305 | 0.8993 | 3.6388 | 0.305 | 0.2465 | 0.2603 | 0.4771 |
No log | 18.0 | 450 | 0.0762 | 0.31 | 0.8916 | 3.2067 | 0.31 | 0.2602 | 0.2755 | 0.4341 |
No log | 19.0 | 475 | 0.0758 | 0.315 | 0.8861 | 3.1537 | 0.315 | 0.2659 | 0.2820 | 0.4282 |
0.0818 | 20.0 | 500 | 0.0755 | 0.3475 | 0.8713 | 3.3614 | 0.3475 | 0.2869 | 0.2830 | 0.3966 |
0.0818 | 21.0 | 525 | 0.0755 | 0.34 | 0.8627 | 3.3538 | 0.34 | 0.2728 | 0.2781 | 0.3934 |
0.0818 | 22.0 | 550 | 0.0752 | 0.3575 | 0.8578 | 3.4181 | 0.3575 | 0.3052 | 0.2867 | 0.4037 |
0.0818 | 23.0 | 575 | 0.0745 | 0.365 | 0.8486 | 2.7931 | 0.3650 | 0.3297 | 0.2908 | 0.3669 |
0.0818 | 24.0 | 600 | 0.0743 | 0.395 | 0.8392 | 2.8800 | 0.395 | 0.3419 | 0.3054 | 0.3602 |
0.0818 | 25.0 | 625 | 0.0741 | 0.3975 | 0.8382 | 2.8294 | 0.3975 | 0.3584 | 0.3049 | 0.3469 |
0.0818 | 26.0 | 650 | 0.0739 | 0.4125 | 0.8308 | 2.9306 | 0.4125 | 0.3650 | 0.3179 | 0.3342 |
0.0818 | 27.0 | 675 | 0.0740 | 0.425 | 0.8237 | 3.0954 | 0.425 | 0.3831 | 0.3069 | 0.3356 |
0.0818 | 28.0 | 700 | 0.0739 | 0.425 | 0.8325 | 3.0230 | 0.425 | 0.3933 | 0.3154 | 0.3316 |
0.0818 | 29.0 | 725 | 0.0735 | 0.445 | 0.8150 | 2.9001 | 0.445 | 0.4078 | 0.3320 | 0.3125 |
0.0818 | 30.0 | 750 | 0.0734 | 0.44 | 0.8127 | 2.8272 | 0.44 | 0.4048 | 0.3196 | 0.3145 |
0.0818 | 31.0 | 775 | 0.0733 | 0.45 | 0.8105 | 2.9716 | 0.45 | 0.4224 | 0.3214 | 0.3126 |
0.0818 | 32.0 | 800 | 0.0732 | 0.4475 | 0.8059 | 2.7234 | 0.4475 | 0.4211 | 0.3166 | 0.3098 |
0.0818 | 33.0 | 825 | 0.0734 | 0.45 | 0.8091 | 2.8963 | 0.45 | 0.4298 | 0.3174 | 0.3144 |
0.0818 | 34.0 | 850 | 0.0732 | 0.45 | 0.8021 | 2.7268 | 0.45 | 0.4216 | 0.3203 | 0.3024 |
0.0818 | 35.0 | 875 | 0.0732 | 0.465 | 0.8013 | 2.9374 | 0.465 | 0.4379 | 0.3417 | 0.2959 |
0.0818 | 36.0 | 900 | 0.0732 | 0.4575 | 0.8039 | 2.9305 | 0.4575 | 0.4360 | 0.3166 | 0.3029 |
0.0818 | 37.0 | 925 | 0.0733 | 0.4725 | 0.8017 | 2.7705 | 0.4725 | 0.4542 | 0.3348 | 0.2859 |
0.0818 | 38.0 | 950 | 0.0732 | 0.4725 | 0.7963 | 2.8600 | 0.4725 | 0.4559 | 0.3432 | 0.2826 |
0.0818 | 39.0 | 975 | 0.0731 | 0.4825 | 0.7979 | 2.7795 | 0.4825 | 0.4675 | 0.3361 | 0.2930 |
0.0698 | 40.0 | 1000 | 0.0732 | 0.445 | 0.7962 | 2.8308 | 0.445 | 0.4366 | 0.3056 | 0.3058 |
0.0698 | 41.0 | 1025 | 0.0732 | 0.4675 | 0.7914 | 2.7809 | 0.4675 | 0.4582 | 0.3173 | 0.2904 |
0.0698 | 42.0 | 1050 | 0.0731 | 0.4625 | 0.7952 | 2.8907 | 0.4625 | 0.4644 | 0.3175 | 0.2910 |
0.0698 | 43.0 | 1075 | 0.0733 | 0.4625 | 0.7955 | 2.7470 | 0.4625 | 0.4545 | 0.3107 | 0.2930 |
0.0698 | 44.0 | 1100 | 0.0731 | 0.4725 | 0.7894 | 2.8684 | 0.4725 | 0.4640 | 0.3281 | 0.2883 |
0.0698 | 45.0 | 1125 | 0.0731 | 0.475 | 0.7912 | 2.9091 | 0.4750 | 0.4594 | 0.3302 | 0.2830 |
0.0698 | 46.0 | 1150 | 0.0731 | 0.47 | 0.7911 | 2.7282 | 0.47 | 0.4705 | 0.3344 | 0.2865 |
0.0698 | 47.0 | 1175 | 0.0732 | 0.4775 | 0.7886 | 2.8402 | 0.4775 | 0.4737 | 0.3151 | 0.2846 |
0.0698 | 48.0 | 1200 | 0.0731 | 0.4825 | 0.7850 | 2.7818 | 0.4825 | 0.4833 | 0.3422 | 0.2807 |
0.0698 | 49.0 | 1225 | 0.0731 | 0.4625 | 0.7863 | 2.7929 | 0.4625 | 0.4621 | 0.3205 | 0.2828 |
0.0698 | 50.0 | 1250 | 0.0732 | 0.4725 | 0.7875 | 2.8382 | 0.4725 | 0.4686 | 0.3364 | 0.2831 |
0.0698 | 51.0 | 1275 | 0.0731 | 0.4725 | 0.7861 | 2.7543 | 0.4725 | 0.4661 | 0.3229 | 0.2838 |
0.0698 | 52.0 | 1300 | 0.0731 | 0.475 | 0.7863 | 2.7936 | 0.4750 | 0.4771 | 0.3285 | 0.2801 |
0.0698 | 53.0 | 1325 | 0.0731 | 0.4825 | 0.7846 | 2.8369 | 0.4825 | 0.4843 | 0.3369 | 0.2747 |
0.0698 | 54.0 | 1350 | 0.0731 | 0.4725 | 0.7852 | 2.8102 | 0.4725 | 0.4747 | 0.3175 | 0.2869 |
0.0698 | 55.0 | 1375 | 0.0731 | 0.475 | 0.7855 | 2.8205 | 0.4750 | 0.4801 | 0.3409 | 0.2802 |
0.0698 | 56.0 | 1400 | 0.0731 | 0.48 | 0.7855 | 2.7926 | 0.48 | 0.4815 | 0.3403 | 0.2827 |
0.0698 | 57.0 | 1425 | 0.0731 | 0.4825 | 0.7826 | 2.7536 | 0.4825 | 0.4815 | 0.3381 | 0.2788 |
0.0698 | 58.0 | 1450 | 0.0731 | 0.4875 | 0.7851 | 2.8313 | 0.4875 | 0.4901 | 0.3395 | 0.2719 |
0.0698 | 59.0 | 1475 | 0.0731 | 0.4875 | 0.7838 | 2.7423 | 0.4875 | 0.4905 | 0.3410 | 0.2735 |
0.0654 | 60.0 | 1500 | 0.0731 | 0.48 | 0.7849 | 2.7730 | 0.48 | 0.4818 | 0.3344 | 0.2807 |
0.0654 | 61.0 | 1525 | 0.0732 | 0.48 | 0.7816 | 2.7517 | 0.48 | 0.4813 | 0.3370 | 0.2762 |
0.0654 | 62.0 | 1550 | 0.0731 | 0.4775 | 0.7833 | 2.8441 | 0.4775 | 0.4804 | 0.3314 | 0.2767 |
0.0654 | 63.0 | 1575 | 0.0731 | 0.4775 | 0.7835 | 2.7252 | 0.4775 | 0.4811 | 0.3354 | 0.2769 |
0.0654 | 64.0 | 1600 | 0.0732 | 0.4925 | 0.7819 | 2.7991 | 0.4925 | 0.4958 | 0.3371 | 0.2726 |
0.0654 | 65.0 | 1625 | 0.0731 | 0.4825 | 0.7806 | 2.6719 | 0.4825 | 0.4850 | 0.3190 | 0.2752 |
0.0654 | 66.0 | 1650 | 0.0732 | 0.48 | 0.7817 | 2.7669 | 0.48 | 0.4828 | 0.3336 | 0.2791 |
0.0654 | 67.0 | 1675 | 0.0731 | 0.4775 | 0.7813 | 2.6678 | 0.4775 | 0.4822 | 0.3304 | 0.2750 |
0.0654 | 68.0 | 1700 | 0.0732 | 0.4875 | 0.7829 | 2.7529 | 0.4875 | 0.4919 | 0.3381 | 0.2756 |
0.0654 | 69.0 | 1725 | 0.0731 | 0.4825 | 0.7795 | 2.7291 | 0.4825 | 0.4839 | 0.3418 | 0.2737 |
0.0654 | 70.0 | 1750 | 0.0732 | 0.4875 | 0.7827 | 2.7613 | 0.4875 | 0.4909 | 0.3308 | 0.2747 |
0.0654 | 71.0 | 1775 | 0.0732 | 0.4825 | 0.7816 | 2.7348 | 0.4825 | 0.4863 | 0.3306 | 0.2733 |
0.0654 | 72.0 | 1800 | 0.0732 | 0.4825 | 0.7813 | 2.6920 | 0.4825 | 0.4863 | 0.3268 | 0.2724 |
0.0654 | 73.0 | 1825 | 0.0731 | 0.485 | 0.7809 | 2.6890 | 0.485 | 0.4872 | 0.3307 | 0.2741 |
0.0654 | 74.0 | 1850 | 0.0732 | 0.4825 | 0.7810 | 2.6668 | 0.4825 | 0.4854 | 0.3245 | 0.2758 |
0.0654 | 75.0 | 1875 | 0.0732 | 0.48 | 0.7814 | 2.7337 | 0.48 | 0.4836 | 0.3232 | 0.2767 |
0.0654 | 76.0 | 1900 | 0.0731 | 0.49 | 0.7802 | 2.7219 | 0.49 | 0.4900 | 0.3290 | 0.2727 |
0.0654 | 77.0 | 1925 | 0.0732 | 0.48 | 0.7804 | 2.7187 | 0.48 | 0.4821 | 0.3223 | 0.2759 |
0.0654 | 78.0 | 1950 | 0.0732 | 0.485 | 0.7811 | 2.6797 | 0.485 | 0.4884 | 0.3343 | 0.2754 |
0.0654 | 79.0 | 1975 | 0.0731 | 0.48 | 0.7784 | 2.6604 | 0.48 | 0.4816 | 0.3345 | 0.2751 |
0.0641 | 80.0 | 2000 | 0.0732 | 0.485 | 0.7797 | 2.6380 | 0.485 | 0.4876 | 0.3317 | 0.2755 |
0.0641 | 81.0 | 2025 | 0.0732 | 0.4775 | 0.7805 | 2.6934 | 0.4775 | 0.4808 | 0.3225 | 0.2758 |
0.0641 | 82.0 | 2050 | 0.0732 | 0.4825 | 0.7802 | 2.7315 | 0.4825 | 0.4851 | 0.3364 | 0.2781 |
0.0641 | 83.0 | 2075 | 0.0732 | 0.4875 | 0.7800 | 2.7011 | 0.4875 | 0.4899 | 0.3222 | 0.2736 |
0.0641 | 84.0 | 2100 | 0.0732 | 0.4825 | 0.7796 | 2.6672 | 0.4825 | 0.4845 | 0.3203 | 0.2772 |
0.0641 | 85.0 | 2125 | 0.0732 | 0.4825 | 0.7798 | 2.6956 | 0.4825 | 0.4833 | 0.3373 | 0.2757 |
0.0641 | 86.0 | 2150 | 0.0732 | 0.48 | 0.7797 | 2.6349 | 0.48 | 0.4823 | 0.3265 | 0.2774 |
0.0641 | 87.0 | 2175 | 0.0732 | 0.49 | 0.7800 | 2.7238 | 0.49 | 0.4921 | 0.3407 | 0.2755 |
0.0641 | 88.0 | 2200 | 0.0732 | 0.4775 | 0.7800 | 2.6423 | 0.4775 | 0.4804 | 0.3163 | 0.2785 |
0.0641 | 89.0 | 2225 | 0.0732 | 0.485 | 0.7793 | 2.6734 | 0.485 | 0.4881 | 0.3310 | 0.2760 |
0.0641 | 90.0 | 2250 | 0.0732 | 0.4825 | 0.7796 | 2.6582 | 0.4825 | 0.4858 | 0.3232 | 0.2774 |
0.0641 | 91.0 | 2275 | 0.0732 | 0.485 | 0.7790 | 2.6705 | 0.485 | 0.4882 | 0.3277 | 0.2760 |
0.0641 | 92.0 | 2300 | 0.0732 | 0.49 | 0.7795 | 2.6465 | 0.49 | 0.4943 | 0.3513 | 0.2767 |
0.0641 | 93.0 | 2325 | 0.0732 | 0.4825 | 0.7791 | 2.6495 | 0.4825 | 0.4852 | 0.3414 | 0.2763 |
0.0641 | 94.0 | 2350 | 0.0732 | 0.49 | 0.7793 | 2.6402 | 0.49 | 0.4933 | 0.3458 | 0.2760 |
0.0641 | 95.0 | 2375 | 0.0732 | 0.4875 | 0.7792 | 2.6448 | 0.4875 | 0.4898 | 0.3420 | 0.2763 |
0.0641 | 96.0 | 2400 | 0.0732 | 0.4825 | 0.7792 | 2.6402 | 0.4825 | 0.4847 | 0.3346 | 0.2766 |
0.0641 | 97.0 | 2425 | 0.0733 | 0.485 | 0.7793 | 2.6397 | 0.485 | 0.4873 | 0.3407 | 0.2768 |
0.0641 | 98.0 | 2450 | 0.0732 | 0.4825 | 0.7790 | 2.6388 | 0.4825 | 0.4847 | 0.3374 | 0.2763 |
0.0641 | 99.0 | 2475 | 0.0733 | 0.4825 | 0.7792 | 2.6390 | 0.4825 | 0.4847 | 0.3393 | 0.2767 |
0.0637 | 100.0 | 2500 | 0.0733 | 0.4825 | 0.7791 | 2.6387 | 0.4825 | 0.4847 | 0.3427 | 0.2765 |
Framework versions
- Transformers 4.26.1
- Pytorch 1.13.1.post200
- Datasets 2.9.0
- Tokenizers 0.13.2