<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. -->
vit-tiny_rvl_cdip_100_examples_per_class_kd_CEKD_t1.5_a0.7
This model is a fine-tuned version of WinKawaks/vit-tiny-patch16-224 on the None dataset. It achieves the following results on the evaluation set:
- Loss: 1.5923
- Accuracy: 0.57
- Brier Loss: 0.5750
- Nll: 2.3088
- F1 Micro: 0.57
- F1 Macro: 0.5661
- Ece: 0.1722
- Aurc: 0.2058
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 128
- eval_batch_size: 128
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 100
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | Brier Loss | Nll | F1 Micro | F1 Macro | Ece | Aurc |
---|---|---|---|---|---|---|---|---|---|---|
No log | 1.0 | 7 | 4.3150 | 0.0425 | 1.0714 | 7.3695 | 0.0425 | 0.0339 | 0.2866 | 0.9549 |
No log | 2.0 | 14 | 3.3516 | 0.1 | 0.9507 | 5.8558 | 0.1000 | 0.0866 | 0.1647 | 0.8831 |
No log | 3.0 | 21 | 2.9890 | 0.225 | 0.8838 | 5.3580 | 0.225 | 0.1805 | 0.1576 | 0.6316 |
No log | 4.0 | 28 | 2.5376 | 0.29 | 0.7946 | 3.5543 | 0.29 | 0.2749 | 0.1832 | 0.4807 |
No log | 5.0 | 35 | 2.2193 | 0.3875 | 0.7186 | 3.0794 | 0.3875 | 0.3677 | 0.1577 | 0.3531 |
No log | 6.0 | 42 | 2.0818 | 0.43 | 0.6905 | 2.9853 | 0.4300 | 0.4165 | 0.1668 | 0.3056 |
No log | 7.0 | 49 | 2.1032 | 0.45 | 0.7019 | 3.1044 | 0.45 | 0.4208 | 0.2121 | 0.2997 |
No log | 8.0 | 56 | 2.0360 | 0.455 | 0.6994 | 2.8491 | 0.455 | 0.4492 | 0.2131 | 0.3026 |
No log | 9.0 | 63 | 2.1719 | 0.475 | 0.7092 | 2.7831 | 0.4750 | 0.4549 | 0.2332 | 0.2870 |
No log | 10.0 | 70 | 2.1820 | 0.4525 | 0.7393 | 2.8185 | 0.4525 | 0.4318 | 0.2813 | 0.2994 |
No log | 11.0 | 77 | 2.2659 | 0.4475 | 0.7485 | 2.8020 | 0.4475 | 0.4227 | 0.2677 | 0.3046 |
No log | 12.0 | 84 | 2.1798 | 0.4575 | 0.7325 | 2.6772 | 0.4575 | 0.4555 | 0.2738 | 0.3081 |
No log | 13.0 | 91 | 2.3031 | 0.465 | 0.7431 | 2.8956 | 0.465 | 0.4390 | 0.2771 | 0.2945 |
No log | 14.0 | 98 | 2.0867 | 0.49 | 0.7048 | 2.5312 | 0.49 | 0.4823 | 0.2528 | 0.2921 |
No log | 15.0 | 105 | 2.1671 | 0.49 | 0.7218 | 2.7779 | 0.49 | 0.4749 | 0.2396 | 0.2877 |
No log | 16.0 | 112 | 2.0091 | 0.485 | 0.6857 | 2.7234 | 0.485 | 0.4608 | 0.2493 | 0.2577 |
No log | 17.0 | 119 | 1.9494 | 0.515 | 0.6714 | 2.4841 | 0.515 | 0.5072 | 0.2380 | 0.2614 |
No log | 18.0 | 126 | 1.9132 | 0.505 | 0.6665 | 2.4777 | 0.505 | 0.4945 | 0.2206 | 0.2622 |
No log | 19.0 | 133 | 2.0539 | 0.505 | 0.6776 | 2.7885 | 0.505 | 0.4986 | 0.2209 | 0.2724 |
No log | 20.0 | 140 | 1.9533 | 0.5125 | 0.6666 | 2.7287 | 0.5125 | 0.5044 | 0.2385 | 0.2645 |
No log | 21.0 | 147 | 1.9038 | 0.525 | 0.6365 | 2.8345 | 0.525 | 0.5099 | 0.2021 | 0.2290 |
No log | 22.0 | 154 | 1.8525 | 0.5075 | 0.6448 | 2.6337 | 0.5075 | 0.4958 | 0.2083 | 0.2494 |
No log | 23.0 | 161 | 1.7880 | 0.51 | 0.6386 | 2.4856 | 0.51 | 0.5078 | 0.2186 | 0.2478 |
No log | 24.0 | 168 | 1.8363 | 0.505 | 0.6456 | 2.5075 | 0.505 | 0.4966 | 0.1962 | 0.2399 |
No log | 25.0 | 175 | 1.9655 | 0.4725 | 0.6864 | 2.6331 | 0.4725 | 0.4608 | 0.2291 | 0.2669 |
No log | 26.0 | 182 | 1.8660 | 0.5175 | 0.6547 | 2.5404 | 0.5175 | 0.5076 | 0.2252 | 0.2489 |
No log | 27.0 | 189 | 1.8693 | 0.525 | 0.6446 | 2.6230 | 0.525 | 0.5145 | 0.2047 | 0.2540 |
No log | 28.0 | 196 | 1.8113 | 0.51 | 0.6407 | 2.4380 | 0.51 | 0.4978 | 0.2030 | 0.2454 |
No log | 29.0 | 203 | 1.8313 | 0.53 | 0.6445 | 2.4777 | 0.53 | 0.5284 | 0.2071 | 0.2575 |
No log | 30.0 | 210 | 1.7310 | 0.5425 | 0.6197 | 2.4559 | 0.5425 | 0.5384 | 0.1869 | 0.2367 |
No log | 31.0 | 217 | 1.8023 | 0.5325 | 0.6351 | 2.5026 | 0.5325 | 0.5216 | 0.2081 | 0.2496 |
No log | 32.0 | 224 | 1.7652 | 0.5325 | 0.6186 | 2.4794 | 0.5325 | 0.5145 | 0.1715 | 0.2338 |
No log | 33.0 | 231 | 1.7583 | 0.525 | 0.6363 | 2.4889 | 0.525 | 0.5275 | 0.1984 | 0.2463 |
No log | 34.0 | 238 | 1.7552 | 0.5475 | 0.6164 | 2.4291 | 0.5475 | 0.5305 | 0.2026 | 0.2377 |
No log | 35.0 | 245 | 1.6839 | 0.5375 | 0.6085 | 2.5915 | 0.5375 | 0.5253 | 0.1828 | 0.2214 |
No log | 36.0 | 252 | 1.7480 | 0.5425 | 0.6104 | 2.5809 | 0.5425 | 0.5366 | 0.1716 | 0.2232 |
No log | 37.0 | 259 | 1.7534 | 0.525 | 0.6225 | 2.3614 | 0.525 | 0.5183 | 0.1930 | 0.2249 |
No log | 38.0 | 266 | 1.7484 | 0.5425 | 0.6125 | 2.5714 | 0.5425 | 0.5282 | 0.1792 | 0.2272 |
No log | 39.0 | 273 | 1.7073 | 0.55 | 0.6172 | 2.4200 | 0.55 | 0.5370 | 0.1902 | 0.2314 |
No log | 40.0 | 280 | 1.7303 | 0.55 | 0.6134 | 2.4829 | 0.55 | 0.5394 | 0.1916 | 0.2324 |
No log | 41.0 | 287 | 1.6684 | 0.54 | 0.6060 | 2.4632 | 0.54 | 0.5350 | 0.2028 | 0.2251 |
No log | 42.0 | 294 | 1.7171 | 0.5375 | 0.6055 | 2.4705 | 0.5375 | 0.5213 | 0.1776 | 0.2262 |
No log | 43.0 | 301 | 1.6493 | 0.545 | 0.5991 | 2.5207 | 0.545 | 0.5412 | 0.1779 | 0.2214 |
No log | 44.0 | 308 | 1.6548 | 0.5625 | 0.5920 | 2.4810 | 0.5625 | 0.5568 | 0.1892 | 0.2182 |
No log | 45.0 | 315 | 1.6392 | 0.565 | 0.5943 | 2.3771 | 0.565 | 0.5586 | 0.2165 | 0.2162 |
No log | 46.0 | 322 | 1.6923 | 0.5225 | 0.6159 | 2.3661 | 0.5225 | 0.5158 | 0.1775 | 0.2400 |
No log | 47.0 | 329 | 1.6266 | 0.5525 | 0.5827 | 2.4385 | 0.5525 | 0.5468 | 0.1845 | 0.2100 |
No log | 48.0 | 336 | 1.6804 | 0.55 | 0.6019 | 2.3884 | 0.55 | 0.5481 | 0.1895 | 0.2291 |
No log | 49.0 | 343 | 1.6202 | 0.5725 | 0.5847 | 2.4882 | 0.5725 | 0.5596 | 0.1642 | 0.2125 |
No log | 50.0 | 350 | 1.6222 | 0.54 | 0.5882 | 2.4144 | 0.54 | 0.5311 | 0.1830 | 0.2226 |
No log | 51.0 | 357 | 1.6119 | 0.5775 | 0.5794 | 2.4063 | 0.5775 | 0.5731 | 0.1647 | 0.2019 |
No log | 52.0 | 364 | 1.5958 | 0.57 | 0.5757 | 2.3342 | 0.57 | 0.5642 | 0.1778 | 0.2094 |
No log | 53.0 | 371 | 1.6206 | 0.545 | 0.5913 | 2.3884 | 0.545 | 0.5365 | 0.1799 | 0.2187 |
No log | 54.0 | 378 | 1.5982 | 0.5675 | 0.5745 | 2.4276 | 0.5675 | 0.5640 | 0.1746 | 0.2050 |
No log | 55.0 | 385 | 1.6258 | 0.5525 | 0.5856 | 2.4005 | 0.5525 | 0.5373 | 0.1890 | 0.2124 |
No log | 56.0 | 392 | 1.5763 | 0.57 | 0.5744 | 2.4477 | 0.57 | 0.5729 | 0.1651 | 0.2081 |
No log | 57.0 | 399 | 1.6249 | 0.5525 | 0.5861 | 2.3791 | 0.5525 | 0.5432 | 0.1531 | 0.2114 |
No log | 58.0 | 406 | 1.6240 | 0.5775 | 0.5791 | 2.4540 | 0.5775 | 0.5730 | 0.1582 | 0.2054 |
No log | 59.0 | 413 | 1.6149 | 0.545 | 0.5851 | 2.3134 | 0.545 | 0.5395 | 0.1870 | 0.2137 |
No log | 60.0 | 420 | 1.6163 | 0.5775 | 0.5792 | 2.3778 | 0.5775 | 0.5708 | 0.1762 | 0.2076 |
No log | 61.0 | 427 | 1.6132 | 0.5575 | 0.5868 | 2.3759 | 0.5575 | 0.5530 | 0.1842 | 0.2159 |
No log | 62.0 | 434 | 1.5940 | 0.5725 | 0.5756 | 2.3394 | 0.5725 | 0.5731 | 0.2102 | 0.2054 |
No log | 63.0 | 441 | 1.6167 | 0.56 | 0.5841 | 2.4117 | 0.56 | 0.5541 | 0.1806 | 0.2160 |
No log | 64.0 | 448 | 1.5988 | 0.57 | 0.5775 | 2.3388 | 0.57 | 0.5667 | 0.1680 | 0.2064 |
No log | 65.0 | 455 | 1.5893 | 0.5725 | 0.5752 | 2.4281 | 0.5725 | 0.5695 | 0.1624 | 0.2050 |
No log | 66.0 | 462 | 1.5975 | 0.5725 | 0.5737 | 2.3760 | 0.5725 | 0.5662 | 0.1733 | 0.2026 |
No log | 67.0 | 469 | 1.5903 | 0.57 | 0.5772 | 2.2921 | 0.57 | 0.5675 | 0.1888 | 0.2112 |
No log | 68.0 | 476 | 1.5878 | 0.575 | 0.5730 | 2.3676 | 0.575 | 0.5706 | 0.1683 | 0.2039 |
No log | 69.0 | 483 | 1.5950 | 0.57 | 0.5775 | 2.3006 | 0.57 | 0.5641 | 0.1639 | 0.2076 |
No log | 70.0 | 490 | 1.5916 | 0.58 | 0.5728 | 2.3424 | 0.58 | 0.5769 | 0.1714 | 0.2026 |
No log | 71.0 | 497 | 1.5960 | 0.5675 | 0.5784 | 2.3057 | 0.5675 | 0.5624 | 0.1600 | 0.2073 |
0.3705 | 72.0 | 504 | 1.5907 | 0.575 | 0.5755 | 2.3322 | 0.575 | 0.5723 | 0.1578 | 0.2066 |
0.3705 | 73.0 | 511 | 1.5918 | 0.5675 | 0.5762 | 2.3182 | 0.5675 | 0.5605 | 0.1942 | 0.2071 |
0.3705 | 74.0 | 518 | 1.5894 | 0.585 | 0.5747 | 2.3335 | 0.585 | 0.5818 | 0.1739 | 0.2035 |
0.3705 | 75.0 | 525 | 1.5878 | 0.565 | 0.5750 | 2.3019 | 0.565 | 0.5607 | 0.1649 | 0.2060 |
0.3705 | 76.0 | 532 | 1.5923 | 0.575 | 0.5742 | 2.3376 | 0.575 | 0.5699 | 0.1779 | 0.2048 |
0.3705 | 77.0 | 539 | 1.5891 | 0.565 | 0.5760 | 2.2978 | 0.565 | 0.5616 | 0.1691 | 0.2066 |
0.3705 | 78.0 | 546 | 1.5896 | 0.575 | 0.5738 | 2.3748 | 0.575 | 0.5703 | 0.1733 | 0.2048 |
0.3705 | 79.0 | 553 | 1.5901 | 0.5675 | 0.5757 | 2.3039 | 0.5675 | 0.5634 | 0.1710 | 0.2064 |
0.3705 | 80.0 | 560 | 1.5906 | 0.57 | 0.5746 | 2.3125 | 0.57 | 0.5657 | 0.1692 | 0.2054 |
0.3705 | 81.0 | 567 | 1.5907 | 0.57 | 0.5751 | 2.3097 | 0.57 | 0.5659 | 0.1600 | 0.2047 |
0.3705 | 82.0 | 574 | 1.5902 | 0.57 | 0.5746 | 2.3072 | 0.57 | 0.5657 | 0.1797 | 0.2055 |
0.3705 | 83.0 | 581 | 1.5906 | 0.5725 | 0.5746 | 2.3145 | 0.5725 | 0.5681 | 0.1547 | 0.2050 |
0.3705 | 84.0 | 588 | 1.5909 | 0.5725 | 0.5750 | 2.3057 | 0.5725 | 0.5684 | 0.1746 | 0.2055 |
0.3705 | 85.0 | 595 | 1.5906 | 0.57 | 0.5746 | 2.3098 | 0.57 | 0.5661 | 0.1721 | 0.2054 |
0.3705 | 86.0 | 602 | 1.5916 | 0.57 | 0.5749 | 2.3093 | 0.57 | 0.5661 | 0.1659 | 0.2058 |
0.3705 | 87.0 | 609 | 1.5913 | 0.57 | 0.5748 | 2.3084 | 0.57 | 0.5661 | 0.1631 | 0.2058 |
0.3705 | 88.0 | 616 | 1.5918 | 0.57 | 0.5749 | 2.3082 | 0.57 | 0.5661 | 0.1652 | 0.2058 |
0.3705 | 89.0 | 623 | 1.5919 | 0.57 | 0.5750 | 2.3084 | 0.57 | 0.5661 | 0.1658 | 0.2059 |
0.3705 | 90.0 | 630 | 1.5918 | 0.5725 | 0.5749 | 2.3087 | 0.5725 | 0.5685 | 0.1650 | 0.2056 |
0.3705 | 91.0 | 637 | 1.5921 | 0.57 | 0.5750 | 2.3076 | 0.57 | 0.5661 | 0.1549 | 0.2059 |
0.3705 | 92.0 | 644 | 1.5920 | 0.57 | 0.5750 | 2.3079 | 0.57 | 0.5661 | 0.1581 | 0.2058 |
0.3705 | 93.0 | 651 | 1.5917 | 0.57 | 0.5749 | 2.3080 | 0.57 | 0.5661 | 0.1680 | 0.2057 |
0.3705 | 94.0 | 658 | 1.5923 | 0.57 | 0.5750 | 2.3083 | 0.57 | 0.5661 | 0.1643 | 0.2058 |
0.3705 | 95.0 | 665 | 1.5924 | 0.57 | 0.5751 | 2.3085 | 0.57 | 0.5661 | 0.1543 | 0.2059 |
0.3705 | 96.0 | 672 | 1.5922 | 0.57 | 0.5750 | 2.3085 | 0.57 | 0.5661 | 0.1530 | 0.2058 |
0.3705 | 97.0 | 679 | 1.5923 | 0.57 | 0.5750 | 2.3088 | 0.57 | 0.5661 | 0.1688 | 0.2058 |
0.3705 | 98.0 | 686 | 1.5923 | 0.57 | 0.5749 | 2.3089 | 0.57 | 0.5661 | 0.1733 | 0.2058 |
0.3705 | 99.0 | 693 | 1.5923 | 0.57 | 0.5750 | 2.3088 | 0.57 | 0.5661 | 0.1735 | 0.2058 |
0.3705 | 100.0 | 700 | 1.5923 | 0.57 | 0.5750 | 2.3088 | 0.57 | 0.5661 | 0.1722 | 0.2058 |
Framework versions
- Transformers 4.26.1
- Pytorch 1.13.1.post200
- Datasets 2.9.0
- Tokenizers 0.13.2