generated_from_trainer

<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. -->

perioli_manifesti_v5.8.3

This model is a fine-tuned version of microsoft/layoutlmv3-base on the sroie dataset. It achieves the following results on the evaluation set:

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
No log 0.4 100 0.1382 0.7597 0.7766 0.7681 0.9681
No log 0.81 200 0.0622 0.8825 0.9088 0.8954 0.9861
No log 1.21 300 0.0430 0.9173 0.9409 0.9290 0.9910
No log 1.62 400 0.0379 0.9178 0.9468 0.9321 0.9916
0.1487 2.02 500 0.0273 0.9509 0.9626 0.9567 0.9942
0.1487 2.43 600 0.0353 0.9274 0.9567 0.9419 0.9925
0.1487 2.83 700 0.0272 0.9573 0.9690 0.9631 0.9950
0.1487 3.24 800 0.0264 0.9531 0.9632 0.9581 0.9939
0.1487 3.64 900 0.0230 0.9547 0.9608 0.9577 0.9945
0.0186 4.05 1000 0.0284 0.9443 0.9614 0.9528 0.9938
0.0186 4.45 1100 0.0341 0.9263 0.9561 0.9410 0.9920
0.0186 4.86 1200 0.0320 0.9477 0.9649 0.9562 0.9944
0.0186 5.26 1300 0.0267 0.9566 0.9661 0.9613 0.9949
0.0186 5.67 1400 0.0279 0.9548 0.9643 0.9596 0.9947
0.0106 6.07 1500 0.0262 0.9560 0.9667 0.9613 0.9947
0.0106 6.48 1600 0.0269 0.9526 0.9643 0.9584 0.9947
0.0106 6.88 1700 0.0249 0.9611 0.9678 0.9645 0.9955
0.0106 7.29 1800 0.0314 0.9509 0.9620 0.9564 0.9940
0.0106 7.69 1900 0.0311 0.9493 0.9643 0.9568 0.9944
0.0068 8.1 2000 0.0211 0.9616 0.9667 0.9641 0.9956
0.0068 8.5 2100 0.0272 0.9548 0.9626 0.9586 0.9948
0.0068 8.91 2200 0.0246 0.9667 0.9673 0.9670 0.9957
0.0068 9.31 2300 0.0267 0.9567 0.9696 0.9631 0.9951
0.0068 9.72 2400 0.0236 0.9605 0.9673 0.9639 0.9955
0.0056 10.12 2500 0.0259 0.9555 0.9667 0.9610 0.9949
0.0056 10.53 2600 0.0269 0.9578 0.9678 0.9628 0.9951
0.0056 10.93 2700 0.0268 0.9581 0.9637 0.9609 0.9946
0.0056 11.34 2800 0.0275 0.9572 0.9673 0.9622 0.9950
0.0056 11.74 2900 0.0273 0.9555 0.9661 0.9607 0.9947
0.0038 12.15 3000 0.0252 0.9644 0.9661 0.9652 0.9956
0.0038 12.55 3100 0.0260 0.9593 0.9661 0.9627 0.9952
0.0038 12.96 3200 0.0260 0.9577 0.9673 0.9625 0.9950
0.0038 13.36 3300 0.0285 0.9550 0.9678 0.9614 0.9949
0.0038 13.77 3400 0.0291 0.9533 0.9673 0.9602 0.9948
0.0029 14.17 3500 0.0294 0.9499 0.9655 0.9577 0.9946
0.0029 14.57 3600 0.0292 0.9561 0.9678 0.9619 0.9949
0.0029 14.98 3700 0.0301 0.9510 0.9643 0.9576 0.9943
0.0029 15.38 3800 0.0277 0.9578 0.9684 0.9631 0.9954
0.0029 15.79 3900 0.0279 0.9584 0.9690 0.9637 0.9953
0.0023 16.19 4000 0.0282 0.9584 0.9690 0.9637 0.9953

Framework versions