<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. -->
perioli_manifesti_v5.8.4
This model is a fine-tuned version of microsoft/layoutlmv3-base on the sroie dataset. It achieves the following results on the evaluation set:
- Loss: 0.0296
- Precision: 0.9663
- Recall: 0.9713
- F1: 0.9688
- Accuracy: 0.9955
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- training_steps: 4000
Training results
Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
---|---|---|---|---|---|---|---|
No log | 0.4 | 100 | 0.1199 | 0.8069 | 0.7965 | 0.8016 | 0.9730 |
No log | 0.81 | 200 | 0.0519 | 0.8943 | 0.9205 | 0.9072 | 0.9887 |
No log | 1.21 | 300 | 0.0353 | 0.9284 | 0.9409 | 0.9347 | 0.9915 |
No log | 1.62 | 400 | 0.0344 | 0.9333 | 0.9497 | 0.9414 | 0.9921 |
0.1473 | 2.02 | 500 | 0.0261 | 0.9510 | 0.9649 | 0.9579 | 0.9942 |
0.1473 | 2.43 | 600 | 0.0266 | 0.9566 | 0.9667 | 0.9616 | 0.9945 |
0.1473 | 2.83 | 700 | 0.0250 | 0.9674 | 0.9719 | 0.9697 | 0.9955 |
0.1473 | 3.24 | 800 | 0.0278 | 0.9521 | 0.9637 | 0.9579 | 0.9942 |
0.1473 | 3.64 | 900 | 0.0270 | 0.9566 | 0.9661 | 0.9613 | 0.9947 |
0.0178 | 4.05 | 1000 | 0.0263 | 0.9649 | 0.9637 | 0.9643 | 0.9949 |
0.0178 | 4.45 | 1100 | 0.0232 | 0.9559 | 0.9637 | 0.9598 | 0.9946 |
0.0178 | 4.86 | 1200 | 0.0233 | 0.9662 | 0.9684 | 0.9673 | 0.9955 |
0.0178 | 5.26 | 1300 | 0.0241 | 0.9685 | 0.9696 | 0.9690 | 0.9958 |
0.0178 | 5.67 | 1400 | 0.0258 | 0.9629 | 0.9702 | 0.9665 | 0.9953 |
0.0103 | 6.07 | 1500 | 0.0269 | 0.9669 | 0.9725 | 0.9697 | 0.9954 |
0.0103 | 6.48 | 1600 | 0.0256 | 0.9683 | 0.9649 | 0.9666 | 0.9951 |
0.0103 | 6.88 | 1700 | 0.0276 | 0.9695 | 0.9673 | 0.9684 | 0.9955 |
0.0103 | 7.29 | 1800 | 0.0270 | 0.9656 | 0.9678 | 0.9667 | 0.9953 |
0.0103 | 7.69 | 1900 | 0.0280 | 0.9634 | 0.9684 | 0.9659 | 0.9953 |
0.0069 | 8.1 | 2000 | 0.0254 | 0.9612 | 0.9573 | 0.9593 | 0.9947 |
0.0069 | 8.5 | 2100 | 0.0257 | 0.9667 | 0.9684 | 0.9676 | 0.9953 |
0.0069 | 8.91 | 2200 | 0.0284 | 0.9662 | 0.9708 | 0.9685 | 0.9955 |
0.0069 | 9.31 | 2300 | 0.0252 | 0.9679 | 0.9708 | 0.9693 | 0.9958 |
0.0069 | 9.72 | 2400 | 0.0248 | 0.9709 | 0.9743 | 0.9726 | 0.9961 |
0.0056 | 10.12 | 2500 | 0.0278 | 0.9646 | 0.9725 | 0.9685 | 0.9955 |
0.0056 | 10.53 | 2600 | 0.0294 | 0.9662 | 0.9702 | 0.9682 | 0.9954 |
0.0056 | 10.93 | 2700 | 0.0298 | 0.96 | 0.9684 | 0.9642 | 0.9950 |
0.0056 | 11.34 | 2800 | 0.0297 | 0.9679 | 0.9690 | 0.9684 | 0.9954 |
0.0056 | 11.74 | 2900 | 0.0311 | 0.9634 | 0.9696 | 0.9665 | 0.9953 |
0.0037 | 12.15 | 3000 | 0.0302 | 0.9629 | 0.9702 | 0.9665 | 0.9953 |
0.0037 | 12.55 | 3100 | 0.0300 | 0.9599 | 0.9667 | 0.9633 | 0.9950 |
0.0037 | 12.96 | 3200 | 0.0293 | 0.9645 | 0.9684 | 0.9664 | 0.9952 |
0.0037 | 13.36 | 3300 | 0.0292 | 0.9646 | 0.9708 | 0.9676 | 0.9954 |
0.0037 | 13.77 | 3400 | 0.0308 | 0.9612 | 0.9696 | 0.9654 | 0.9952 |
0.0031 | 14.17 | 3500 | 0.0292 | 0.9634 | 0.9696 | 0.9665 | 0.9953 |
0.0031 | 14.57 | 3600 | 0.0290 | 0.9651 | 0.9702 | 0.9676 | 0.9953 |
0.0031 | 14.98 | 3700 | 0.0296 | 0.9652 | 0.9719 | 0.9685 | 0.9955 |
0.0031 | 15.38 | 3800 | 0.0298 | 0.9634 | 0.9696 | 0.9665 | 0.9953 |
0.0031 | 15.79 | 3900 | 0.0296 | 0.9663 | 0.9713 | 0.9688 | 0.9955 |
0.0023 | 16.19 | 4000 | 0.0296 | 0.9663 | 0.9713 | 0.9688 | 0.9955 |
Framework versions
- Transformers 4.28.0
- Pytorch 2.0.1+cu118
- Datasets 2.2.2
- Tokenizers 0.13.3