<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. -->
vit-tiny_tobacco3482_simkd__tNone_gNone__logits
This model is a fine-tuned version of WinKawaks/vit-tiny-patch16-224 on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.0388
- Accuracy: 0.82
- Brier Loss: 0.7227
- Nll: 2.6079
- F1 Micro: 0.82
- F1 Macro: 0.7960
- Ece: 0.6182
- Aurc: 0.0575
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 100
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | Brier Loss | Nll | F1 Micro | F1 Macro | Ece | Aurc |
---|---|---|---|---|---|---|---|---|---|---|
No log | 1.0 | 100 | 0.0492 | 0.03 | 0.9002 | 15.7630 | 0.03 | 0.0130 | 0.1184 | 0.9407 |
No log | 2.0 | 200 | 0.0479 | 0.045 | 0.8991 | 12.1839 | 0.045 | 0.0140 | 0.1350 | 0.9268 |
No log | 3.0 | 300 | 0.0472 | 0.305 | 0.8968 | 12.2323 | 0.305 | 0.1551 | 0.2930 | 0.5596 |
No log | 4.0 | 400 | 0.0463 | 0.305 | 0.8938 | 10.0711 | 0.305 | 0.1809 | 0.3077 | 0.5037 |
0.0541 | 5.0 | 500 | 0.0453 | 0.325 | 0.8898 | 9.3778 | 0.325 | 0.2046 | 0.3193 | 0.4698 |
0.0541 | 6.0 | 600 | 0.0442 | 0.4 | 0.8787 | 9.6363 | 0.4000 | 0.2403 | 0.3713 | 0.3759 |
0.0541 | 7.0 | 700 | 0.0433 | 0.4 | 0.8639 | 9.3483 | 0.4000 | 0.2510 | 0.3685 | 0.3742 |
0.0541 | 8.0 | 800 | 0.0428 | 0.475 | 0.8521 | 9.0007 | 0.4750 | 0.2666 | 0.4177 | 0.2978 |
0.0541 | 9.0 | 900 | 0.0422 | 0.515 | 0.8438 | 7.6934 | 0.515 | 0.3644 | 0.4480 | 0.2431 |
0.0451 | 10.0 | 1000 | 0.0417 | 0.515 | 0.8210 | 7.6243 | 0.515 | 0.3743 | 0.4387 | 0.2146 |
0.0451 | 11.0 | 1100 | 0.0411 | 0.68 | 0.8190 | 3.6435 | 0.68 | 0.5226 | 0.5677 | 0.1272 |
0.0451 | 12.0 | 1200 | 0.0403 | 0.655 | 0.7803 | 5.4537 | 0.655 | 0.5379 | 0.5202 | 0.1352 |
0.0451 | 13.0 | 1300 | 0.0398 | 0.75 | 0.7745 | 4.1150 | 0.75 | 0.6543 | 0.5945 | 0.0749 |
0.0451 | 14.0 | 1400 | 0.0390 | 0.77 | 0.7561 | 2.8538 | 0.7700 | 0.6703 | 0.6085 | 0.0753 |
0.0406 | 15.0 | 1500 | 0.0392 | 0.745 | 0.7637 | 3.7047 | 0.745 | 0.6673 | 0.5796 | 0.1060 |
0.0406 | 16.0 | 1600 | 0.0398 | 0.73 | 0.7603 | 4.3010 | 0.7300 | 0.6681 | 0.5693 | 0.0949 |
0.0406 | 17.0 | 1700 | 0.0399 | 0.705 | 0.7610 | 3.6375 | 0.705 | 0.6564 | 0.5590 | 0.0923 |
0.0406 | 18.0 | 1800 | 0.0397 | 0.705 | 0.7536 | 4.2628 | 0.705 | 0.6170 | 0.5472 | 0.1332 |
0.0406 | 19.0 | 1900 | 0.0390 | 0.745 | 0.7400 | 2.8861 | 0.745 | 0.6686 | 0.5644 | 0.1070 |
0.0379 | 20.0 | 2000 | 0.0394 | 0.785 | 0.7238 | 3.3111 | 0.785 | 0.7255 | 0.5995 | 0.0695 |
0.0379 | 21.0 | 2100 | 0.0396 | 0.76 | 0.7419 | 3.1935 | 0.76 | 0.7463 | 0.5885 | 0.0793 |
0.0379 | 22.0 | 2200 | 0.0396 | 0.785 | 0.7423 | 3.7954 | 0.785 | 0.7737 | 0.6043 | 0.0873 |
0.0379 | 23.0 | 2300 | 0.0395 | 0.78 | 0.7321 | 3.8067 | 0.78 | 0.7491 | 0.5885 | 0.0908 |
0.0379 | 24.0 | 2400 | 0.0387 | 0.8 | 0.7228 | 2.9339 | 0.8000 | 0.7758 | 0.6038 | 0.0609 |
0.037 | 25.0 | 2500 | 0.0387 | 0.795 | 0.7222 | 2.6252 | 0.795 | 0.7601 | 0.6094 | 0.0606 |
0.037 | 26.0 | 2600 | 0.0387 | 0.8 | 0.7241 | 2.6253 | 0.8000 | 0.7628 | 0.6110 | 0.0607 |
0.037 | 27.0 | 2700 | 0.0387 | 0.795 | 0.7235 | 2.4818 | 0.795 | 0.7616 | 0.6093 | 0.0629 |
0.037 | 28.0 | 2800 | 0.0387 | 0.795 | 0.7245 | 2.6226 | 0.795 | 0.7586 | 0.6032 | 0.0604 |
0.037 | 29.0 | 2900 | 0.0387 | 0.805 | 0.7253 | 2.7588 | 0.805 | 0.7725 | 0.6144 | 0.0609 |
0.0364 | 30.0 | 3000 | 0.0387 | 0.805 | 0.7233 | 2.4956 | 0.805 | 0.7701 | 0.6204 | 0.0594 |
0.0364 | 31.0 | 3100 | 0.0387 | 0.81 | 0.7241 | 2.7695 | 0.81 | 0.7797 | 0.6188 | 0.0602 |
0.0364 | 32.0 | 3200 | 0.0386 | 0.81 | 0.7239 | 2.6185 | 0.81 | 0.7797 | 0.6190 | 0.0580 |
0.0364 | 33.0 | 3300 | 0.0387 | 0.805 | 0.7238 | 2.9106 | 0.805 | 0.7717 | 0.6182 | 0.0586 |
0.0364 | 34.0 | 3400 | 0.0386 | 0.805 | 0.7231 | 2.9062 | 0.805 | 0.7725 | 0.6133 | 0.0590 |
0.0364 | 35.0 | 3500 | 0.0387 | 0.805 | 0.7247 | 2.7645 | 0.805 | 0.7717 | 0.6141 | 0.0590 |
0.0364 | 36.0 | 3600 | 0.0386 | 0.805 | 0.7238 | 2.9152 | 0.805 | 0.7717 | 0.6104 | 0.0578 |
0.0364 | 37.0 | 3700 | 0.0387 | 0.805 | 0.7229 | 2.9094 | 0.805 | 0.7717 | 0.6142 | 0.0588 |
0.0364 | 38.0 | 3800 | 0.0386 | 0.805 | 0.7237 | 2.9185 | 0.805 | 0.7717 | 0.6173 | 0.0565 |
0.0364 | 39.0 | 3900 | 0.0386 | 0.805 | 0.7230 | 2.9178 | 0.805 | 0.7717 | 0.6131 | 0.0578 |
0.0364 | 40.0 | 4000 | 0.0386 | 0.805 | 0.7233 | 2.9155 | 0.805 | 0.7717 | 0.6131 | 0.0561 |
0.0364 | 41.0 | 4100 | 0.0386 | 0.805 | 0.7235 | 2.9142 | 0.805 | 0.7717 | 0.6173 | 0.0574 |
0.0364 | 42.0 | 4200 | 0.0387 | 0.805 | 0.7225 | 2.9162 | 0.805 | 0.7717 | 0.6196 | 0.0572 |
0.0364 | 43.0 | 4300 | 0.0387 | 0.805 | 0.7231 | 3.0596 | 0.805 | 0.7717 | 0.6139 | 0.0560 |
0.0364 | 44.0 | 4400 | 0.0387 | 0.805 | 0.7229 | 3.0584 | 0.805 | 0.7717 | 0.6140 | 0.0558 |
0.0364 | 45.0 | 4500 | 0.0386 | 0.815 | 0.7231 | 2.9107 | 0.815 | 0.7856 | 0.6224 | 0.0551 |
0.0364 | 46.0 | 4600 | 0.0386 | 0.8 | 0.7228 | 3.0609 | 0.8000 | 0.7683 | 0.6154 | 0.0570 |
0.0364 | 47.0 | 4700 | 0.0386 | 0.8 | 0.7229 | 3.0539 | 0.8000 | 0.7683 | 0.6141 | 0.0564 |
0.0364 | 48.0 | 4800 | 0.0387 | 0.805 | 0.7228 | 2.9149 | 0.805 | 0.7753 | 0.6164 | 0.0559 |
0.0364 | 49.0 | 4900 | 0.0387 | 0.805 | 0.7239 | 3.0631 | 0.805 | 0.7729 | 0.6144 | 0.0569 |
0.0364 | 50.0 | 5000 | 0.0387 | 0.8 | 0.7231 | 3.0551 | 0.8000 | 0.7683 | 0.6094 | 0.0562 |
0.0364 | 51.0 | 5100 | 0.0387 | 0.815 | 0.7232 | 3.0662 | 0.815 | 0.7868 | 0.6212 | 0.0569 |
0.0364 | 52.0 | 5200 | 0.0386 | 0.805 | 0.7226 | 2.9067 | 0.805 | 0.7753 | 0.6241 | 0.0550 |
0.0364 | 53.0 | 5300 | 0.0387 | 0.81 | 0.7236 | 2.9086 | 0.81 | 0.7761 | 0.6209 | 0.0558 |
0.0364 | 54.0 | 5400 | 0.0387 | 0.805 | 0.7240 | 2.9108 | 0.805 | 0.7729 | 0.6072 | 0.0577 |
0.0364 | 55.0 | 5500 | 0.0387 | 0.815 | 0.7228 | 2.9235 | 0.815 | 0.7832 | 0.6202 | 0.0556 |
0.0364 | 56.0 | 5600 | 0.0387 | 0.82 | 0.7229 | 2.9335 | 0.82 | 0.7898 | 0.6273 | 0.0544 |
0.0364 | 57.0 | 5700 | 0.0387 | 0.82 | 0.7230 | 2.9210 | 0.82 | 0.7900 | 0.6292 | 0.0561 |
0.0364 | 58.0 | 5800 | 0.0387 | 0.82 | 0.7227 | 2.9211 | 0.82 | 0.7898 | 0.6325 | 0.0560 |
0.0364 | 59.0 | 5900 | 0.0386 | 0.82 | 0.7238 | 3.0664 | 0.82 | 0.7898 | 0.6249 | 0.0548 |
0.0364 | 60.0 | 6000 | 0.0387 | 0.82 | 0.7218 | 2.9137 | 0.82 | 0.7900 | 0.6397 | 0.0545 |
0.0364 | 61.0 | 6100 | 0.0387 | 0.82 | 0.7233 | 3.0756 | 0.82 | 0.7900 | 0.6225 | 0.0563 |
0.0364 | 62.0 | 6200 | 0.0387 | 0.815 | 0.7231 | 3.0725 | 0.815 | 0.7878 | 0.6190 | 0.0558 |
0.0364 | 63.0 | 6300 | 0.0387 | 0.82 | 0.7218 | 3.0589 | 0.82 | 0.7900 | 0.6223 | 0.0554 |
0.0364 | 64.0 | 6400 | 0.0387 | 0.82 | 0.7231 | 3.0632 | 0.82 | 0.7900 | 0.6289 | 0.0551 |
0.0363 | 65.0 | 6500 | 0.0387 | 0.82 | 0.7227 | 3.0595 | 0.82 | 0.7900 | 0.6339 | 0.0560 |
0.0363 | 66.0 | 6600 | 0.0387 | 0.82 | 0.7229 | 2.9000 | 0.82 | 0.7900 | 0.6320 | 0.0551 |
0.0363 | 67.0 | 6700 | 0.0387 | 0.82 | 0.7222 | 2.9092 | 0.82 | 0.7900 | 0.6292 | 0.0548 |
0.0363 | 68.0 | 6800 | 0.0387 | 0.82 | 0.7233 | 2.7662 | 0.82 | 0.7900 | 0.6299 | 0.0564 |
0.0363 | 69.0 | 6900 | 0.0387 | 0.82 | 0.7230 | 2.9095 | 0.82 | 0.7900 | 0.6239 | 0.0555 |
0.0363 | 70.0 | 7000 | 0.0387 | 0.82 | 0.7226 | 2.9175 | 0.82 | 0.7908 | 0.6274 | 0.0549 |
0.0363 | 71.0 | 7100 | 0.0387 | 0.82 | 0.7237 | 3.0548 | 0.82 | 0.7900 | 0.6337 | 0.0550 |
0.0363 | 72.0 | 7200 | 0.0387 | 0.815 | 0.7229 | 2.9144 | 0.815 | 0.7841 | 0.6207 | 0.0570 |
0.0363 | 73.0 | 7300 | 0.0387 | 0.82 | 0.7235 | 2.9041 | 0.82 | 0.7900 | 0.6310 | 0.0564 |
0.0363 | 74.0 | 7400 | 0.0387 | 0.82 | 0.7227 | 2.9094 | 0.82 | 0.7908 | 0.6291 | 0.0558 |
0.0363 | 75.0 | 7500 | 0.0387 | 0.825 | 0.7236 | 2.9105 | 0.825 | 0.7983 | 0.6319 | 0.0543 |
0.0363 | 76.0 | 7600 | 0.0387 | 0.82 | 0.7225 | 2.9172 | 0.82 | 0.7908 | 0.6260 | 0.0550 |
0.0363 | 77.0 | 7700 | 0.0387 | 0.815 | 0.7227 | 2.9050 | 0.815 | 0.7841 | 0.6325 | 0.0557 |
0.0363 | 78.0 | 7800 | 0.0387 | 0.825 | 0.7236 | 2.9242 | 0.825 | 0.7983 | 0.6264 | 0.0575 |
0.0363 | 79.0 | 7900 | 0.0387 | 0.82 | 0.7231 | 2.9167 | 0.82 | 0.7900 | 0.6263 | 0.0572 |
0.0363 | 80.0 | 8000 | 0.0387 | 0.825 | 0.7229 | 2.7707 | 0.825 | 0.8004 | 0.6311 | 0.0569 |
0.0363 | 81.0 | 8100 | 0.0387 | 0.81 | 0.7230 | 2.9083 | 0.81 | 0.7812 | 0.6295 | 0.0573 |
0.0363 | 82.0 | 8200 | 0.0387 | 0.82 | 0.7227 | 2.7600 | 0.82 | 0.7927 | 0.6263 | 0.0576 |
0.0363 | 83.0 | 8300 | 0.0387 | 0.815 | 0.7226 | 2.7902 | 0.815 | 0.7930 | 0.6169 | 0.0576 |
0.0363 | 84.0 | 8400 | 0.0387 | 0.815 | 0.7226 | 2.7666 | 0.815 | 0.7841 | 0.6254 | 0.0571 |
0.0363 | 85.0 | 8500 | 0.0387 | 0.82 | 0.7228 | 2.7730 | 0.82 | 0.7960 | 0.6226 | 0.0566 |
0.0363 | 86.0 | 8600 | 0.0387 | 0.815 | 0.7228 | 2.6311 | 0.815 | 0.7878 | 0.6186 | 0.0572 |
0.0363 | 87.0 | 8700 | 0.0388 | 0.82 | 0.7230 | 2.6272 | 0.82 | 0.7924 | 0.6321 | 0.0575 |
0.0363 | 88.0 | 8800 | 0.0387 | 0.82 | 0.7227 | 2.7579 | 0.82 | 0.7924 | 0.6318 | 0.0568 |
0.0363 | 89.0 | 8900 | 0.0388 | 0.82 | 0.7227 | 2.7688 | 0.82 | 0.7960 | 0.6238 | 0.0575 |
0.0363 | 90.0 | 9000 | 0.0387 | 0.82 | 0.7232 | 2.6100 | 0.82 | 0.7986 | 0.6290 | 0.0569 |
0.0363 | 91.0 | 9100 | 0.0387 | 0.82 | 0.7228 | 2.6088 | 0.82 | 0.7960 | 0.6258 | 0.0574 |
0.0363 | 92.0 | 9200 | 0.0387 | 0.825 | 0.7228 | 2.6134 | 0.825 | 0.8038 | 0.6239 | 0.0575 |
0.0363 | 93.0 | 9300 | 0.0387 | 0.825 | 0.7229 | 2.6136 | 0.825 | 0.7990 | 0.6283 | 0.0576 |
0.0363 | 94.0 | 9400 | 0.0387 | 0.82 | 0.7228 | 2.6112 | 0.82 | 0.7924 | 0.6235 | 0.0580 |
0.0363 | 95.0 | 9500 | 0.0388 | 0.82 | 0.7228 | 2.6077 | 0.82 | 0.7960 | 0.6185 | 0.0575 |
0.0363 | 96.0 | 9600 | 0.0388 | 0.825 | 0.7229 | 2.6073 | 0.825 | 0.8038 | 0.6206 | 0.0572 |
0.0363 | 97.0 | 9700 | 0.0388 | 0.82 | 0.7227 | 2.6077 | 0.82 | 0.7960 | 0.6213 | 0.0572 |
0.0363 | 98.0 | 9800 | 0.0388 | 0.815 | 0.7228 | 2.6094 | 0.815 | 0.7893 | 0.6161 | 0.0579 |
0.0363 | 99.0 | 9900 | 0.0388 | 0.815 | 0.7228 | 2.6086 | 0.815 | 0.7893 | 0.6160 | 0.0579 |
0.0363 | 100.0 | 10000 | 0.0388 | 0.82 | 0.7227 | 2.6079 | 0.82 | 0.7960 | 0.6182 | 0.0575 |
Framework versions
- Transformers 4.28.0.dev0
- Pytorch 1.12.1+cu113
- Datasets 2.12.0
- Tokenizers 0.12.1