<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. -->
vit-tiny_tobacco3482_dualsimkd_
This model is a fine-tuned version of WinKawaks/vit-tiny-patch16-224 on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.1401
- Accuracy: 0.385
- Brier Loss: 0.8709
- Nll: 8.8462
- F1 Micro: 0.3850
- F1 Macro: 0.1979
- Ece: 0.3606
- Aurc: 0.3874
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 100
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | Brier Loss | Nll | F1 Micro | F1 Macro | Ece | Aurc |
---|---|---|---|---|---|---|---|---|---|---|
No log | 1.0 | 100 | 0.5117 | 0.04 | 0.9009 | 19.1664 | 0.04 | 0.0077 | 0.1344 | 0.9445 |
No log | 2.0 | 200 | 0.3168 | 0.05 | 0.8997 | 15.0313 | 0.0500 | 0.0095 | 0.1344 | 0.8364 |
No log | 3.0 | 300 | 0.2703 | 0.18 | 0.8978 | 9.6860 | 0.18 | 0.0305 | 0.2180 | 0.7731 |
No log | 4.0 | 400 | 0.2266 | 0.18 | 0.8952 | 12.0957 | 0.18 | 0.0305 | 0.2223 | 0.7993 |
1.1219 | 5.0 | 500 | 0.1687 | 0.18 | 0.8951 | 12.7136 | 0.18 | 0.0305 | 0.2215 | 0.7713 |
1.1219 | 6.0 | 600 | 0.1331 | 0.165 | 0.8956 | 12.6737 | 0.165 | 0.0284 | 0.2044 | 0.7829 |
1.1219 | 7.0 | 700 | 0.1139 | 0.18 | 0.8960 | 12.6380 | 0.18 | 0.0305 | 0.2283 | 0.7875 |
1.1219 | 8.0 | 800 | 0.1143 | 0.18 | 0.8963 | 12.6385 | 0.18 | 0.0306 | 0.2183 | 0.7703 |
1.1219 | 9.0 | 900 | 0.1246 | 0.18 | 0.8966 | 12.5389 | 0.18 | 0.0305 | 0.2223 | 0.7726 |
0.0694 | 10.0 | 1000 | 0.1262 | 0.18 | 0.8961 | 12.6316 | 0.18 | 0.0305 | 0.2271 | 0.7894 |
0.0694 | 11.0 | 1100 | 0.1186 | 0.155 | 0.8961 | 12.6309 | 0.155 | 0.0268 | 0.2169 | 0.6418 |
0.0694 | 12.0 | 1200 | 0.1290 | 0.18 | 0.8960 | 12.6360 | 0.18 | 0.0305 | 0.2272 | 0.8014 |
0.0694 | 13.0 | 1300 | 0.1202 | 0.18 | 0.8959 | 12.6644 | 0.18 | 0.0305 | 0.2274 | 0.7910 |
0.0694 | 14.0 | 1400 | 0.1341 | 0.18 | 0.8960 | 12.6667 | 0.18 | 0.0305 | 0.2273 | 0.7916 |
0.0505 | 15.0 | 1500 | 0.1234 | 0.18 | 0.8961 | 12.6653 | 0.18 | 0.0305 | 0.2261 | 0.7819 |
0.0505 | 16.0 | 1600 | 0.1375 | 0.18 | 0.8960 | 12.6951 | 0.18 | 0.0305 | 0.2283 | 0.7929 |
0.0505 | 17.0 | 1700 | 0.1249 | 0.18 | 0.8959 | 12.7041 | 0.18 | 0.0305 | 0.2262 | 0.7820 |
0.0505 | 18.0 | 1800 | 0.1263 | 0.18 | 0.8964 | 12.6096 | 0.18 | 0.0305 | 0.2228 | 0.7900 |
0.0505 | 19.0 | 1900 | 0.1243 | 0.18 | 0.8961 | 12.6667 | 0.18 | 0.0305 | 0.2229 | 0.7896 |
0.0483 | 20.0 | 2000 | 0.1246 | 0.18 | 0.8960 | 12.6285 | 0.18 | 0.0305 | 0.2172 | 0.7913 |
0.0483 | 21.0 | 2100 | 0.1218 | 0.18 | 0.8961 | 12.6375 | 0.18 | 0.0305 | 0.2250 | 0.8003 |
0.0483 | 22.0 | 2200 | 0.1228 | 0.18 | 0.8964 | 12.5765 | 0.18 | 0.0305 | 0.2258 | 0.7938 |
0.0483 | 23.0 | 2300 | 0.1270 | 0.18 | 0.8963 | 12.6332 | 0.18 | 0.0305 | 0.2239 | 0.8055 |
0.0483 | 24.0 | 2400 | 0.1303 | 0.18 | 0.8963 | 12.5914 | 0.18 | 0.0305 | 0.2270 | 0.8006 |
0.0484 | 25.0 | 2500 | 0.1234 | 0.18 | 0.8960 | 12.6429 | 0.18 | 0.0305 | 0.2208 | 0.7990 |
0.0484 | 26.0 | 2600 | 0.1313 | 0.18 | 0.8965 | 12.5721 | 0.18 | 0.0305 | 0.2205 | 0.8069 |
0.0484 | 27.0 | 2700 | 0.1314 | 0.18 | 0.8963 | 12.5982 | 0.18 | 0.0305 | 0.2247 | 0.8110 |
0.0484 | 28.0 | 2800 | 0.1326 | 0.18 | 0.8962 | 12.6539 | 0.18 | 0.0305 | 0.2143 | 0.8083 |
0.0484 | 29.0 | 2900 | 0.1337 | 0.18 | 0.8964 | 12.5814 | 0.18 | 0.0305 | 0.2225 | 0.8106 |
0.0473 | 30.0 | 3000 | 0.1369 | 0.18 | 0.8962 | 12.6021 | 0.18 | 0.0305 | 0.2258 | 0.8095 |
0.0473 | 31.0 | 3100 | 0.1295 | 0.18 | 0.8958 | 12.6587 | 0.18 | 0.0305 | 0.2273 | 0.8104 |
0.0473 | 32.0 | 3200 | 0.1343 | 0.18 | 0.8959 | 12.6740 | 0.18 | 0.0305 | 0.2220 | 0.8119 |
0.0473 | 33.0 | 3300 | 0.1359 | 0.18 | 0.8960 | 12.6790 | 0.18 | 0.0305 | 0.2273 | 0.8134 |
0.0473 | 34.0 | 3400 | 0.1367 | 0.18 | 0.8961 | 12.6336 | 0.18 | 0.0305 | 0.2228 | 0.8159 |
0.0476 | 35.0 | 3500 | 0.1378 | 0.18 | 0.8963 | 12.6119 | 0.18 | 0.0305 | 0.2270 | 0.8172 |
0.0476 | 36.0 | 3600 | 0.1286 | 0.18 | 0.8961 | 12.6340 | 0.18 | 0.0305 | 0.2218 | 0.8148 |
0.0476 | 37.0 | 3700 | 0.1333 | 0.18 | 0.8960 | 12.6328 | 0.18 | 0.0305 | 0.2207 | 0.8164 |
0.0476 | 38.0 | 3800 | 0.1328 | 0.18 | 0.8963 | 12.6294 | 0.18 | 0.0305 | 0.2196 | 0.8180 |
0.0476 | 39.0 | 3900 | 0.1344 | 0.18 | 0.8961 | 12.6417 | 0.18 | 0.0305 | 0.2207 | 0.8209 |
0.0474 | 40.0 | 4000 | 0.1362 | 0.18 | 0.8959 | 12.6775 | 0.18 | 0.0305 | 0.2187 | 0.8198 |
0.0474 | 41.0 | 4100 | 0.1340 | 0.18 | 0.8961 | 12.6746 | 0.18 | 0.0305 | 0.2249 | 0.8215 |
0.0474 | 42.0 | 4200 | 0.1308 | 0.18 | 0.8958 | 12.6621 | 0.18 | 0.0305 | 0.2208 | 0.8215 |
0.0474 | 43.0 | 4300 | 0.1372 | 0.18 | 0.8960 | 12.6133 | 0.18 | 0.0305 | 0.2249 | 0.8204 |
0.0474 | 44.0 | 4400 | 0.1436 | 0.18 | 0.8963 | 12.6014 | 0.18 | 0.0305 | 0.2280 | 0.8201 |
0.0472 | 45.0 | 4500 | 0.1374 | 0.18 | 0.8960 | 12.6316 | 0.18 | 0.0305 | 0.2228 | 0.8193 |
0.0472 | 46.0 | 4600 | 0.1261 | 0.18 | 0.8957 | 12.6840 | 0.18 | 0.0305 | 0.2251 | 0.8220 |
0.0472 | 47.0 | 4700 | 0.1340 | 0.18 | 0.8956 | 12.6704 | 0.18 | 0.0305 | 0.2251 | 0.8221 |
0.0472 | 48.0 | 4800 | 0.1320 | 0.18 | 0.8959 | 12.6111 | 0.18 | 0.0305 | 0.2227 | 0.8203 |
0.0472 | 49.0 | 4900 | 0.1336 | 0.18 | 0.8956 | 12.6838 | 0.18 | 0.0305 | 0.2294 | 0.8209 |
0.0474 | 50.0 | 5000 | 0.1342 | 0.18 | 0.8959 | 12.3426 | 0.18 | 0.0305 | 0.2292 | 0.8218 |
0.0474 | 51.0 | 5100 | 0.1362 | 0.18 | 0.8957 | 12.3611 | 0.18 | 0.0305 | 0.2261 | 0.8224 |
0.0474 | 52.0 | 5200 | 0.1368 | 0.18 | 0.8958 | 11.5617 | 0.18 | 0.0305 | 0.2205 | 0.8222 |
0.0474 | 53.0 | 5300 | 0.1391 | 0.18 | 0.8955 | 11.5519 | 0.18 | 0.0305 | 0.2312 | 0.8225 |
0.0474 | 54.0 | 5400 | 0.1366 | 0.18 | 0.8947 | 12.2068 | 0.18 | 0.0305 | 0.2231 | 0.8231 |
0.047 | 55.0 | 5500 | 0.1355 | 0.19 | 0.8943 | 11.5922 | 0.19 | 0.0641 | 0.2299 | 0.8248 |
0.047 | 56.0 | 5600 | 0.1386 | 0.17 | 0.8930 | 11.8204 | 0.17 | 0.0705 | 0.2240 | 0.5968 |
0.047 | 57.0 | 5700 | 0.1364 | 0.33 | 0.8936 | 11.0092 | 0.33 | 0.1878 | 0.3195 | 0.4381 |
0.047 | 58.0 | 5800 | 0.1368 | 0.27 | 0.8923 | 11.0463 | 0.27 | 0.1541 | 0.2874 | 0.5187 |
0.047 | 59.0 | 5900 | 0.1328 | 0.325 | 0.8915 | 10.5269 | 0.325 | 0.1702 | 0.3247 | 0.4469 |
0.0469 | 60.0 | 6000 | 0.1402 | 0.235 | 0.8945 | 9.2940 | 0.235 | 0.1141 | 0.2558 | 0.6612 |
0.0469 | 61.0 | 6100 | 0.1387 | 0.345 | 0.8913 | 9.2678 | 0.345 | 0.1657 | 0.3422 | 0.4100 |
0.0469 | 62.0 | 6200 | 0.1386 | 0.31 | 0.8891 | 10.1100 | 0.31 | 0.1637 | 0.3134 | 0.4609 |
0.0469 | 63.0 | 6300 | 0.1379 | 0.34 | 0.8892 | 9.1965 | 0.34 | 0.1582 | 0.3388 | 0.4344 |
0.0469 | 64.0 | 6400 | 0.1375 | 0.335 | 0.8876 | 9.2252 | 0.335 | 0.1624 | 0.3356 | 0.4239 |
0.0469 | 65.0 | 6500 | 0.1357 | 0.345 | 0.8868 | 9.1887 | 0.345 | 0.1659 | 0.3361 | 0.4061 |
0.0469 | 66.0 | 6600 | 0.1394 | 0.345 | 0.8850 | 9.1819 | 0.345 | 0.1641 | 0.3398 | 0.4265 |
0.0469 | 67.0 | 6700 | 0.1410 | 0.34 | 0.8850 | 9.1158 | 0.34 | 0.1590 | 0.3328 | 0.4302 |
0.0469 | 68.0 | 6800 | 0.1387 | 0.295 | 0.8814 | 9.2693 | 0.295 | 0.1374 | 0.3039 | 0.4572 |
0.0469 | 69.0 | 6900 | 0.1385 | 0.335 | 0.8814 | 9.1526 | 0.335 | 0.1668 | 0.3324 | 0.4205 |
0.0463 | 70.0 | 7000 | 0.1392 | 0.34 | 0.8814 | 9.1159 | 0.34 | 0.1546 | 0.3405 | 0.4263 |
0.0463 | 71.0 | 7100 | 0.1418 | 0.35 | 0.8820 | 9.1363 | 0.35 | 0.1692 | 0.3436 | 0.4019 |
0.0463 | 72.0 | 7200 | 0.1379 | 0.35 | 0.8791 | 9.0483 | 0.35 | 0.1726 | 0.3402 | 0.4226 |
0.0463 | 73.0 | 7300 | 0.1405 | 0.33 | 0.8760 | 9.3563 | 0.33 | 0.1731 | 0.3207 | 0.4307 |
0.0463 | 74.0 | 7400 | 0.1401 | 0.31 | 0.8769 | 9.4413 | 0.31 | 0.1676 | 0.3099 | 0.4383 |
0.0458 | 75.0 | 7500 | 0.1393 | 0.38 | 0.8778 | 9.0788 | 0.38 | 0.1985 | 0.3518 | 0.3976 |
0.0458 | 76.0 | 7600 | 0.1384 | 0.39 | 0.8779 | 9.0233 | 0.39 | 0.2027 | 0.3673 | 0.4144 |
0.0458 | 77.0 | 7700 | 0.1403 | 0.365 | 0.8818 | 9.1567 | 0.3650 | 0.1953 | 0.3518 | 0.4181 |
0.0458 | 78.0 | 7800 | 0.1400 | 0.27 | 0.8725 | 11.0592 | 0.27 | 0.1627 | 0.2896 | 0.4809 |
0.0458 | 79.0 | 7900 | 0.1402 | 0.375 | 0.8739 | 9.1158 | 0.375 | 0.1961 | 0.3540 | 0.3929 |
0.0455 | 80.0 | 8000 | 0.1401 | 0.315 | 0.8722 | 9.9114 | 0.315 | 0.1771 | 0.3220 | 0.4443 |
0.0455 | 81.0 | 8100 | 0.1378 | 0.39 | 0.8761 | 9.0128 | 0.39 | 0.2048 | 0.3642 | 0.4020 |
0.0455 | 82.0 | 8200 | 0.1401 | 0.38 | 0.8729 | 9.1624 | 0.38 | 0.2006 | 0.3612 | 0.3924 |
0.0455 | 83.0 | 8300 | 0.1391 | 0.38 | 0.8742 | 8.8982 | 0.38 | 0.2048 | 0.3561 | 0.3991 |
0.0455 | 84.0 | 8400 | 0.1381 | 0.375 | 0.8734 | 9.0598 | 0.375 | 0.1901 | 0.3567 | 0.4010 |
0.0453 | 85.0 | 8500 | 0.1398 | 0.39 | 0.8718 | 9.1407 | 0.39 | 0.2057 | 0.3693 | 0.3892 |
0.0453 | 86.0 | 8600 | 0.1389 | 0.37 | 0.8721 | 9.3494 | 0.37 | 0.2006 | 0.3505 | 0.3914 |
0.0453 | 87.0 | 8700 | 0.1390 | 0.395 | 0.8743 | 8.7444 | 0.395 | 0.2113 | 0.3724 | 0.3854 |
0.0453 | 88.0 | 8800 | 0.1404 | 0.395 | 0.8739 | 8.7654 | 0.395 | 0.2134 | 0.3657 | 0.3925 |
0.0453 | 89.0 | 8900 | 0.1409 | 0.385 | 0.8726 | 8.7763 | 0.3850 | 0.2032 | 0.3643 | 0.3963 |
0.0451 | 90.0 | 9000 | 0.1403 | 0.39 | 0.8717 | 8.8363 | 0.39 | 0.2055 | 0.3668 | 0.3926 |
0.0451 | 91.0 | 9100 | 0.1388 | 0.39 | 0.8719 | 9.2985 | 0.39 | 0.2099 | 0.3662 | 0.3847 |
0.0451 | 92.0 | 9200 | 0.1397 | 0.385 | 0.8702 | 9.4449 | 0.3850 | 0.2050 | 0.3535 | 0.3877 |
0.0451 | 93.0 | 9300 | 0.1403 | 0.385 | 0.8709 | 8.9790 | 0.3850 | 0.1989 | 0.3473 | 0.3887 |
0.0451 | 94.0 | 9400 | 0.1400 | 0.39 | 0.8705 | 9.1647 | 0.39 | 0.2053 | 0.3569 | 0.3865 |
0.045 | 95.0 | 9500 | 0.1404 | 0.395 | 0.8712 | 9.1707 | 0.395 | 0.2087 | 0.3688 | 0.3815 |
0.045 | 96.0 | 9600 | 0.1404 | 0.385 | 0.8711 | 8.6711 | 0.3850 | 0.1980 | 0.3566 | 0.3867 |
0.045 | 97.0 | 9700 | 0.1399 | 0.39 | 0.8706 | 9.1288 | 0.39 | 0.2035 | 0.3610 | 0.3845 |
0.045 | 98.0 | 9800 | 0.1400 | 0.385 | 0.8708 | 9.1302 | 0.3850 | 0.1982 | 0.3538 | 0.3870 |
0.045 | 99.0 | 9900 | 0.1398 | 0.39 | 0.8712 | 8.8257 | 0.39 | 0.2002 | 0.3660 | 0.3825 |
0.0449 | 100.0 | 10000 | 0.1401 | 0.385 | 0.8709 | 8.8462 | 0.3850 | 0.1979 | 0.3606 | 0.3874 |
Framework versions
- Transformers 4.28.0.dev0
- Pytorch 1.12.1+cu113
- Datasets 2.12.0
- Tokenizers 0.12.1