<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. -->
6_e_200-tiny_tobacco3482_kd_CEKD_t5.0_a0.7
This model is a fine-tuned version of WinKawaks/vit-tiny-patch16-224 on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.6810
- Accuracy: 0.795
- Brier Loss: 0.3284
- Nll: 1.4069
- F1 Micro: 0.795
- F1 Macro: 0.7636
- Ece: 0.2215
- Aurc: 0.0726
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-06
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 100
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | Brier Loss | Nll | F1 Micro | F1 Macro | Ece | Aurc |
---|---|---|---|---|---|---|---|---|---|---|
No log | 1.0 | 25 | 3.5123 | 0.19 | 1.2292 | 9.8836 | 0.19 | 0.0557 | 0.5319 | 0.8455 |
No log | 2.0 | 50 | 3.3061 | 0.19 | 1.1746 | 9.5259 | 0.19 | 0.0557 | 0.4948 | 0.8502 |
No log | 3.0 | 75 | 3.0163 | 0.18 | 1.1038 | 9.0069 | 0.18 | 0.0530 | 0.3959 | 0.8542 |
No log | 4.0 | 100 | 2.7051 | 0.16 | 1.0425 | 8.3332 | 0.16 | 0.0685 | 0.3637 | 0.8603 |
No log | 5.0 | 125 | 2.4101 | 0.145 | 0.9955 | 7.8875 | 0.145 | 0.0886 | 0.3276 | 0.8594 |
No log | 6.0 | 150 | 2.1622 | 0.16 | 0.9581 | 7.4210 | 0.16 | 0.1094 | 0.3098 | 0.8418 |
No log | 7.0 | 175 | 1.9665 | 0.17 | 0.9199 | 6.3502 | 0.17 | 0.1141 | 0.2939 | 0.8129 |
No log | 8.0 | 200 | 1.8218 | 0.19 | 0.8852 | 4.6467 | 0.19 | 0.1580 | 0.2691 | 0.7908 |
No log | 9.0 | 225 | 1.7041 | 0.205 | 0.8503 | 3.9915 | 0.205 | 0.1722 | 0.2746 | 0.7349 |
No log | 10.0 | 250 | 1.6030 | 0.315 | 0.8144 | 3.8156 | 0.315 | 0.2716 | 0.2999 | 0.6443 |
No log | 11.0 | 275 | 1.5078 | 0.39 | 0.7749 | 3.6634 | 0.39 | 0.3103 | 0.2992 | 0.5291 |
No log | 12.0 | 300 | 1.4231 | 0.46 | 0.7351 | 3.5329 | 0.46 | 0.3550 | 0.3143 | 0.4339 |
No log | 13.0 | 325 | 1.3487 | 0.465 | 0.6988 | 3.4534 | 0.465 | 0.3851 | 0.2929 | 0.3704 |
No log | 14.0 | 350 | 1.2823 | 0.51 | 0.6657 | 3.2203 | 0.51 | 0.4164 | 0.2835 | 0.3215 |
No log | 15.0 | 375 | 1.2282 | 0.54 | 0.6399 | 3.0431 | 0.54 | 0.4415 | 0.2943 | 0.2928 |
No log | 16.0 | 400 | 1.1793 | 0.555 | 0.6170 | 2.8562 | 0.555 | 0.4502 | 0.2813 | 0.2676 |
No log | 17.0 | 425 | 1.1466 | 0.565 | 0.6019 | 2.7630 | 0.565 | 0.4607 | 0.2450 | 0.2524 |
No log | 18.0 | 450 | 1.1114 | 0.59 | 0.5832 | 2.7390 | 0.59 | 0.4721 | 0.2850 | 0.2289 |
No log | 19.0 | 475 | 1.0835 | 0.6 | 0.5699 | 2.5928 | 0.6 | 0.5073 | 0.2760 | 0.2195 |
1.9045 | 20.0 | 500 | 1.0547 | 0.615 | 0.5539 | 2.6261 | 0.615 | 0.5273 | 0.2883 | 0.2044 |
1.9045 | 21.0 | 525 | 1.0294 | 0.625 | 0.5404 | 2.6118 | 0.625 | 0.5343 | 0.2703 | 0.1945 |
1.9045 | 22.0 | 550 | 1.0085 | 0.635 | 0.5300 | 2.4378 | 0.635 | 0.5381 | 0.2727 | 0.1842 |
1.9045 | 23.0 | 575 | 0.9900 | 0.64 | 0.5188 | 2.4290 | 0.64 | 0.5435 | 0.2781 | 0.1745 |
1.9045 | 24.0 | 600 | 0.9674 | 0.645 | 0.5071 | 2.3513 | 0.645 | 0.5527 | 0.2631 | 0.1647 |
1.9045 | 25.0 | 625 | 0.9522 | 0.64 | 0.4980 | 2.2815 | 0.64 | 0.5494 | 0.2687 | 0.1606 |
1.9045 | 26.0 | 650 | 0.9336 | 0.65 | 0.4883 | 2.2513 | 0.65 | 0.5603 | 0.2727 | 0.1515 |
1.9045 | 27.0 | 675 | 0.9175 | 0.665 | 0.4795 | 2.2466 | 0.665 | 0.5707 | 0.2848 | 0.1450 |
1.9045 | 28.0 | 700 | 0.9060 | 0.655 | 0.4731 | 2.2223 | 0.655 | 0.5655 | 0.2598 | 0.1426 |
1.9045 | 29.0 | 725 | 0.8924 | 0.67 | 0.4648 | 2.1571 | 0.67 | 0.5748 | 0.2504 | 0.1364 |
1.9045 | 30.0 | 750 | 0.8808 | 0.675 | 0.4580 | 2.1970 | 0.675 | 0.5804 | 0.2124 | 0.1302 |
1.9045 | 31.0 | 775 | 0.8698 | 0.675 | 0.4513 | 1.9818 | 0.675 | 0.5784 | 0.2413 | 0.1248 |
1.9045 | 32.0 | 800 | 0.8581 | 0.685 | 0.4451 | 2.0653 | 0.685 | 0.6062 | 0.2783 | 0.1221 |
1.9045 | 33.0 | 825 | 0.8493 | 0.68 | 0.4398 | 1.9229 | 0.68 | 0.5964 | 0.2430 | 0.1198 |
1.9045 | 34.0 | 850 | 0.8416 | 0.675 | 0.4351 | 1.9147 | 0.675 | 0.5901 | 0.2547 | 0.1181 |
1.9045 | 35.0 | 875 | 0.8329 | 0.69 | 0.4296 | 1.9727 | 0.69 | 0.6098 | 0.2498 | 0.1121 |
1.9045 | 36.0 | 900 | 0.8222 | 0.7 | 0.4234 | 1.8988 | 0.7 | 0.6185 | 0.2404 | 0.1084 |
1.9045 | 37.0 | 925 | 0.8178 | 0.69 | 0.4201 | 1.8900 | 0.69 | 0.6103 | 0.2338 | 0.1079 |
1.9045 | 38.0 | 950 | 0.8091 | 0.69 | 0.4153 | 1.9396 | 0.69 | 0.6100 | 0.2469 | 0.1058 |
1.9045 | 39.0 | 975 | 0.7992 | 0.705 | 0.4098 | 1.8177 | 0.705 | 0.6453 | 0.1971 | 0.1037 |
0.8325 | 40.0 | 1000 | 0.7962 | 0.715 | 0.4069 | 1.7962 | 0.715 | 0.6560 | 0.2474 | 0.1008 |
0.8325 | 41.0 | 1025 | 0.7890 | 0.715 | 0.4032 | 1.7233 | 0.715 | 0.6592 | 0.2417 | 0.1009 |
0.8325 | 42.0 | 1050 | 0.7842 | 0.715 | 0.3997 | 1.6669 | 0.715 | 0.6573 | 0.2441 | 0.1005 |
0.8325 | 43.0 | 1075 | 0.7788 | 0.71 | 0.3962 | 1.6468 | 0.7100 | 0.6515 | 0.2199 | 0.0998 |
0.8325 | 44.0 | 1100 | 0.7713 | 0.725 | 0.3918 | 1.6398 | 0.7250 | 0.6698 | 0.2363 | 0.0945 |
0.8325 | 45.0 | 1125 | 0.7687 | 0.725 | 0.3895 | 1.6397 | 0.7250 | 0.6677 | 0.2478 | 0.0939 |
0.8325 | 46.0 | 1150 | 0.7642 | 0.73 | 0.3867 | 1.6259 | 0.7300 | 0.6684 | 0.2538 | 0.0941 |
0.8325 | 47.0 | 1175 | 0.7571 | 0.74 | 0.3822 | 1.5033 | 0.74 | 0.6907 | 0.2269 | 0.0903 |
0.8325 | 48.0 | 1200 | 0.7547 | 0.74 | 0.3806 | 1.5595 | 0.74 | 0.6830 | 0.2448 | 0.0912 |
0.8325 | 49.0 | 1225 | 0.7516 | 0.75 | 0.3779 | 1.6264 | 0.75 | 0.6921 | 0.2489 | 0.0887 |
0.8325 | 50.0 | 1250 | 0.7477 | 0.75 | 0.3759 | 1.5568 | 0.75 | 0.7029 | 0.2388 | 0.0888 |
0.8325 | 51.0 | 1275 | 0.7431 | 0.755 | 0.3725 | 1.5037 | 0.755 | 0.6986 | 0.2254 | 0.0848 |
0.8325 | 52.0 | 1300 | 0.7418 | 0.755 | 0.3713 | 1.4951 | 0.755 | 0.7085 | 0.2261 | 0.0862 |
0.8325 | 53.0 | 1325 | 0.7360 | 0.77 | 0.3676 | 1.4881 | 0.7700 | 0.7241 | 0.2474 | 0.0825 |
0.8325 | 54.0 | 1350 | 0.7339 | 0.77 | 0.3665 | 1.5554 | 0.7700 | 0.7241 | 0.2646 | 0.0827 |
0.8325 | 55.0 | 1375 | 0.7294 | 0.775 | 0.3636 | 1.4885 | 0.775 | 0.7275 | 0.2283 | 0.0818 |
0.8325 | 56.0 | 1400 | 0.7265 | 0.78 | 0.3617 | 1.5387 | 0.78 | 0.7306 | 0.2416 | 0.0799 |
0.8325 | 57.0 | 1425 | 0.7247 | 0.77 | 0.3598 | 1.4382 | 0.7700 | 0.7241 | 0.2553 | 0.0806 |
0.8325 | 58.0 | 1450 | 0.7234 | 0.78 | 0.3589 | 1.4888 | 0.78 | 0.7306 | 0.2231 | 0.0796 |
0.8325 | 59.0 | 1475 | 0.7186 | 0.78 | 0.3565 | 1.5400 | 0.78 | 0.7306 | 0.2200 | 0.0790 |
0.618 | 60.0 | 1500 | 0.7174 | 0.78 | 0.3549 | 1.4823 | 0.78 | 0.7306 | 0.2340 | 0.0787 |
0.618 | 61.0 | 1525 | 0.7148 | 0.78 | 0.3534 | 1.4804 | 0.78 | 0.7306 | 0.2412 | 0.0785 |
0.618 | 62.0 | 1550 | 0.7122 | 0.785 | 0.3516 | 1.4334 | 0.785 | 0.7445 | 0.2353 | 0.0787 |
0.618 | 63.0 | 1575 | 0.7107 | 0.79 | 0.3501 | 1.4153 | 0.79 | 0.7516 | 0.2354 | 0.0777 |
0.618 | 64.0 | 1600 | 0.7091 | 0.78 | 0.3491 | 1.4698 | 0.78 | 0.7306 | 0.2324 | 0.0780 |
0.618 | 65.0 | 1625 | 0.7071 | 0.79 | 0.3481 | 1.4097 | 0.79 | 0.7516 | 0.2198 | 0.0785 |
0.618 | 66.0 | 1650 | 0.7047 | 0.785 | 0.3464 | 1.4088 | 0.785 | 0.7458 | 0.2325 | 0.0778 |
0.618 | 67.0 | 1675 | 0.7041 | 0.785 | 0.3457 | 1.4108 | 0.785 | 0.7458 | 0.2248 | 0.0781 |
0.618 | 68.0 | 1700 | 0.7025 | 0.79 | 0.3444 | 1.4145 | 0.79 | 0.7516 | 0.2195 | 0.0773 |
0.618 | 69.0 | 1725 | 0.7014 | 0.79 | 0.3436 | 1.4120 | 0.79 | 0.7516 | 0.2629 | 0.0771 |
0.618 | 70.0 | 1750 | 0.6992 | 0.785 | 0.3422 | 1.4046 | 0.785 | 0.7458 | 0.2294 | 0.0767 |
0.618 | 71.0 | 1775 | 0.6982 | 0.785 | 0.3412 | 1.4142 | 0.785 | 0.7458 | 0.2325 | 0.0761 |
0.618 | 72.0 | 1800 | 0.6954 | 0.79 | 0.3395 | 1.4009 | 0.79 | 0.7516 | 0.2253 | 0.0763 |
0.618 | 73.0 | 1825 | 0.6942 | 0.79 | 0.3389 | 1.3994 | 0.79 | 0.7559 | 0.2383 | 0.0763 |
0.618 | 74.0 | 1850 | 0.6937 | 0.785 | 0.3382 | 1.4061 | 0.785 | 0.7458 | 0.2213 | 0.0762 |
0.618 | 75.0 | 1875 | 0.6935 | 0.785 | 0.3378 | 1.4082 | 0.785 | 0.7458 | 0.2218 | 0.0762 |
0.618 | 76.0 | 1900 | 0.6910 | 0.795 | 0.3359 | 1.4098 | 0.795 | 0.7599 | 0.2689 | 0.0746 |
0.618 | 77.0 | 1925 | 0.6907 | 0.79 | 0.3356 | 1.4072 | 0.79 | 0.7541 | 0.2254 | 0.0741 |
0.618 | 78.0 | 1950 | 0.6896 | 0.795 | 0.3352 | 1.3996 | 0.795 | 0.7636 | 0.2226 | 0.0743 |
0.618 | 79.0 | 1975 | 0.6896 | 0.79 | 0.3349 | 1.4073 | 0.79 | 0.7541 | 0.2295 | 0.0742 |
0.516 | 80.0 | 2000 | 0.6874 | 0.79 | 0.3335 | 1.4089 | 0.79 | 0.7541 | 0.2287 | 0.0743 |
0.516 | 81.0 | 2025 | 0.6874 | 0.795 | 0.3333 | 1.3983 | 0.795 | 0.7636 | 0.2387 | 0.0742 |
0.516 | 82.0 | 2050 | 0.6867 | 0.795 | 0.3327 | 1.4098 | 0.795 | 0.7636 | 0.2162 | 0.0736 |
0.516 | 83.0 | 2075 | 0.6865 | 0.795 | 0.3323 | 1.4656 | 0.795 | 0.7636 | 0.2072 | 0.0738 |
0.516 | 84.0 | 2100 | 0.6857 | 0.795 | 0.3323 | 1.4107 | 0.795 | 0.7636 | 0.2138 | 0.0741 |
0.516 | 85.0 | 2125 | 0.6854 | 0.795 | 0.3316 | 1.4223 | 0.795 | 0.7636 | 0.2262 | 0.0732 |
0.516 | 86.0 | 2150 | 0.6846 | 0.795 | 0.3311 | 1.4138 | 0.795 | 0.7636 | 0.2224 | 0.0733 |
0.516 | 87.0 | 2175 | 0.6834 | 0.795 | 0.3302 | 1.4113 | 0.795 | 0.7636 | 0.2307 | 0.0731 |
0.516 | 88.0 | 2200 | 0.6831 | 0.795 | 0.3300 | 1.4088 | 0.795 | 0.7636 | 0.2256 | 0.0730 |
0.516 | 89.0 | 2225 | 0.6821 | 0.795 | 0.3295 | 1.4126 | 0.795 | 0.7636 | 0.2395 | 0.0728 |
0.516 | 90.0 | 2250 | 0.6821 | 0.795 | 0.3294 | 1.4123 | 0.795 | 0.7636 | 0.2237 | 0.0728 |
0.516 | 91.0 | 2275 | 0.6823 | 0.795 | 0.3294 | 1.4085 | 0.795 | 0.7636 | 0.2213 | 0.0728 |
0.516 | 92.0 | 2300 | 0.6819 | 0.795 | 0.3290 | 1.4105 | 0.795 | 0.7636 | 0.2332 | 0.0730 |
0.516 | 93.0 | 2325 | 0.6816 | 0.795 | 0.3289 | 1.4094 | 0.795 | 0.7636 | 0.2236 | 0.0729 |
0.516 | 94.0 | 2350 | 0.6812 | 0.795 | 0.3287 | 1.4092 | 0.795 | 0.7636 | 0.2235 | 0.0729 |
0.516 | 95.0 | 2375 | 0.6813 | 0.795 | 0.3286 | 1.4065 | 0.795 | 0.7636 | 0.2197 | 0.0727 |
0.516 | 96.0 | 2400 | 0.6811 | 0.795 | 0.3285 | 1.4079 | 0.795 | 0.7636 | 0.2247 | 0.0729 |
0.516 | 97.0 | 2425 | 0.6810 | 0.795 | 0.3284 | 1.4072 | 0.795 | 0.7636 | 0.2320 | 0.0729 |
0.516 | 98.0 | 2450 | 0.6810 | 0.795 | 0.3284 | 1.4062 | 0.795 | 0.7636 | 0.2148 | 0.0727 |
0.516 | 99.0 | 2475 | 0.6810 | 0.795 | 0.3284 | 1.4068 | 0.795 | 0.7636 | 0.2215 | 0.0726 |
0.4715 | 100.0 | 2500 | 0.6810 | 0.795 | 0.3284 | 1.4069 | 0.795 | 0.7636 | 0.2215 | 0.0726 |
Framework versions
- Transformers 4.30.2
- Pytorch 1.13.1
- Datasets 2.13.1
- Tokenizers 0.13.3