<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. -->
unispeech-sat-large-timit-ft
This model is a fine-tuned version of microsoft/unispeech-sat-large on the TIMIT_ASR - NA dataset. It achieves the following results on the evaluation set:
- Loss: 0.6074
 - Wer: 0.3880
 
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
 - train_batch_size: 32
 - eval_batch_size: 1
 - seed: 42
 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
 - lr_scheduler_type: linear
 - lr_scheduler_warmup_steps: 1000
 - num_epochs: 20.0
 - mixed_precision_training: Native AMP
 
Training results
| Training Loss | Epoch | Step | Validation Loss | Wer | 
|---|---|---|---|---|
| 6.2516 | 0.69 | 100 | 5.8638 | 1.0 | 
| 2.9596 | 1.38 | 200 | 2.9550 | 1.0 | 
| 2.8831 | 2.07 | 300 | 2.8547 | 1.0 | 
| 2.3223 | 2.76 | 400 | 2.2044 | 1.0063 | 
| 1.2104 | 3.45 | 500 | 1.0845 | 0.7706 | 
| 0.6779 | 4.14 | 600 | 0.7342 | 0.5663 | 
| 0.6319 | 4.83 | 700 | 0.6054 | 0.4881 | 
| 0.664 | 5.52 | 800 | 0.5808 | 0.4913 | 
| 0.402 | 6.21 | 900 | 0.5647 | 0.4611 | 
| 0.3176 | 6.9 | 1000 | 0.5211 | 0.4440 | 
| 0.3392 | 7.59 | 1100 | 0.5187 | 0.4359 | 
| 0.3888 | 8.28 | 1200 | 0.5501 | 0.4391 | 
| 0.2874 | 8.97 | 1300 | 0.5249 | 0.4148 | 
| 0.208 | 9.66 | 1400 | 0.5407 | 0.4152 | 
| 0.1457 | 10.34 | 1500 | 0.5722 | 0.4155 | 
| 0.2375 | 11.03 | 1600 | 0.5780 | 0.4059 | 
| 0.2111 | 11.72 | 1700 | 0.5823 | 0.4094 | 
| 0.1422 | 12.41 | 1800 | 0.5754 | 0.3977 | 
| 0.125 | 13.1 | 1900 | 0.5784 | 0.4031 | 
| 0.1996 | 13.79 | 2000 | 0.5630 | 0.3956 | 
| 0.1747 | 14.48 | 2100 | 0.5880 | 0.3964 | 
| 0.1263 | 15.17 | 2200 | 0.5987 | 0.3951 | 
| 0.11 | 15.86 | 2300 | 0.5688 | 0.3964 | 
| 0.1411 | 16.55 | 2400 | 0.6223 | 0.3906 | 
| 0.1647 | 17.24 | 2500 | 0.6135 | 0.3960 | 
| 0.1162 | 17.93 | 2600 | 0.6224 | 0.3960 | 
| 0.098 | 18.62 | 2700 | 0.6017 | 0.3907 | 
| 0.1183 | 19.31 | 2800 | 0.6121 | 0.3885 | 
| 0.1717 | 20.0 | 2900 | 0.6074 | 0.3880 | 
Framework versions
- Transformers 4.12.0.dev0
 - Pytorch 1.8.1
 - Datasets 1.14.1.dev0
 - Tokenizers 0.10.3