<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. -->
Wav2Vec2-XLSR-300m-es
This model is a fine-tuned version of facebook/wav2vec2-xls-r-300m on the spanish common_voice dataset thanks to the GPU credits generously given by the OVHcloud for the Speech Recognition challenge. It achieves the following results on the evaluation set
Without LM:
- Loss : 0.1900
- Wer : 0.146
With 5-gram:
- WER: 0.109
- CER: 0.036
Usage with 5-gram.
The model can be used with n-gram (n=5) included in the processor as follows.
import re
from transformers import AutoModelForCTC,Wav2Vec2ProcessorWithLM
import torch
# Loading model and processor
processor = Wav2Vec2ProcessorWithLM.from_pretrained("polodealvarado/xls-r-300m-es")
model = AutoModelForCTC.from_pretrained("polodealvarado/xls-r-300m-es")
# Cleaning characters
def remove_extra_chars(batch):
chars_to_ignore_regex = '[^a-záéíóúñ ]'
text = batch["translation"][target_lang]
batch["text"] = re.sub(chars_to_ignore_regex, "", text.lower())
return batch
# Preparing dataset
def prepare_dataset(batch):
audio = batch["audio"]
batch["input_values"] = processor(audio["array"], sampling_rate=audio["sampling_rate"],return_tensors="pt",padding=True).input_values[0]
with processor.as_target_processor():
batch["labels"] = processor(batch["sentence"]).input_ids
return batch
common_voice_test = load_dataset("mozilla-foundation/common_voice_8_0", "es", split="test",use_auth_token=True)
common_voice_test = common_voice_test.remove_columns(["accent", "age", "client_id", "down_votes", "gender", "locale", "segment", "up_votes"])
common_voice_test = common_voice_test.cast_column("audio", Audio(sampling_rate=16_000))
common_voice_test = common_voice_test.map(remove_extra_chars, remove_columns=dataset.column_names)
common_voice_test = common_voice_test.map(prepare_dataset)
# Testing first sample
inputs = torch_tensor(common_voice_test[0]["input_values"])
with torch.no_grad():
logits = model(inputs).logits
pred_ids = torch.argmax(logits, dim=-1)
text = processor.batch_decode(logits.numpy()).text
print(text) # 'bien y qué regalo vas a abrir primero'
On the other, you can execute the eval.py file for evaluation
# To use GPU: --device 0
$ python eval.py --model_id polodealvarado/xls-r-300m-es --dataset mozilla-foundation/common_voice_8_0 --config es --device 0 --split test
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 4
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Wer |
---|---|---|---|---|
3.6747 | 0.3 | 400 | 0.6535 | 0.5926 |
0.4439 | 0.6 | 800 | 0.3753 | 0.3193 |
0.3291 | 0.9 | 1200 | 0.3267 | 0.2721 |
0.2644 | 1.2 | 1600 | 0.2816 | 0.2311 |
0.24 | 1.5 | 2000 | 0.2647 | 0.2179 |
0.2265 | 1.79 | 2400 | 0.2406 | 0.2048 |
0.1994 | 2.09 | 2800 | 0.2357 | 0.1869 |
0.1613 | 2.39 | 3200 | 0.2242 | 0.1821 |
0.1546 | 2.69 | 3600 | 0.2123 | 0.1707 |
0.1441 | 2.99 | 4000 | 0.2067 | 0.1619 |
0.1138 | 3.29 | 4400 | 0.2044 | 0.1519 |
0.1072 | 3.59 | 4800 | 0.1917 | 0.1457 |
0.0992 | 3.89 | 5200 | 0.1900 | 0.1438 |
Framework versions
- Transformers 4.16.0.dev0
- Pytorch 1.10.1+cu102
- Datasets 1.17.1.dev0
- Tokenizers 0.11.0