<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. -->
006-microsoft-deberta-v3-base-finetuned-yahoo-80_20k
This model is a fine-tuned version of microsoft/deberta-v3-base on the None dataset. It achieves the following results on the evaluation set:
- Loss: 1.5718
- F1: 0.7212
- Accuracy: 0.7212
- Precision: 0.7217
- Recall: 0.7212
- System Ram Used: 4.3510
- System Ram Total: 83.4807
- Gpu Ram Allocated: 2.0903
- Gpu Ram Cached: 34.3125
- Gpu Ram Total: 39.5640
- Gpu Utilization: 26
- Disk Space Used: 42.2252
- Disk Space Total: 78.1898
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 32
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10
Training results
Training Loss | Epoch | Step | Validation Loss | F1 | Accuracy | Precision | Recall | System Ram Used | System Ram Total | Gpu Ram Allocated | Gpu Ram Cached | Gpu Ram Total | Gpu Utilization | Disk Space Used | Disk Space Total |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1.0576 | 0.5 | 1250 | 0.8850 | 0.7207 | 0.727 | 0.7338 | 0.727 | 4.0147 | 83.4807 | 2.0903 | 34.3125 | 39.5640 | 26 | 24.9911 | 78.1898 |
0.853 | 1.0 | 2500 | 0.8239 | 0.7432 | 0.7461 | 0.7462 | 0.7461 | 4.0251 | 83.4807 | 2.0903 | 34.3125 | 39.5640 | 26 | 24.9919 | 78.1898 |
0.7364 | 1.5 | 3750 | 0.8151 | 0.7429 | 0.7478 | 0.7431 | 0.7478 | 4.0743 | 83.4807 | 2.0903 | 34.3125 | 39.5640 | 25 | 29.8278 | 78.1898 |
0.7345 | 2.0 | 5000 | 0.8102 | 0.7433 | 0.7470 | 0.7460 | 0.7470 | 4.0763 | 83.4807 | 2.0903 | 34.3125 | 39.5640 | 27 | 29.8285 | 78.1898 |
0.6184 | 2.5 | 6250 | 0.8222 | 0.7498 | 0.7518 | 0.7505 | 0.7518 | 4.0937 | 83.4807 | 2.0903 | 34.3125 | 39.5640 | 27 | 33.9630 | 78.1898 |
0.6174 | 3.0 | 7500 | 0.8322 | 0.7516 | 0.7545 | 0.7530 | 0.7545 | 4.0717 | 83.4807 | 2.0903 | 34.3125 | 39.5640 | 25 | 33.9634 | 78.1898 |
0.5036 | 3.5 | 8750 | 0.8948 | 0.7435 | 0.7476 | 0.7428 | 0.7476 | 4.1335 | 83.4807 | 2.0903 | 34.3125 | 39.5640 | 26 | 38.0971 | 78.1898 |
0.5149 | 4.0 | 10000 | 0.8892 | 0.7416 | 0.7451 | 0.7433 | 0.7451 | 4.1251 | 83.4807 | 2.0903 | 34.3125 | 39.5640 | 26 | 38.0980 | 78.1898 |
0.4106 | 4.5 | 11250 | 0.9957 | 0.7336 | 0.7345 | 0.7348 | 0.7345 | 4.1319 | 83.4807 | 2.0903 | 34.3125 | 39.5640 | 24 | 40.1601 | 78.1898 |
0.407 | 5.0 | 12500 | 0.9997 | 0.7318 | 0.7344 | 0.7332 | 0.7344 | 4.1372 | 83.4807 | 2.0903 | 34.3125 | 39.5640 | 25 | 40.1605 | 78.1898 |
0.3195 | 5.5 | 13750 | 1.0747 | 0.7320 | 0.736 | 0.7318 | 0.736 | 4.1359 | 83.4807 | 2.0903 | 34.3125 | 39.5640 | 25 | 42.2225 | 78.1898 |
0.3281 | 6.0 | 15000 | 1.1199 | 0.7300 | 0.7323 | 0.7313 | 0.7323 | 4.1438 | 83.4807 | 2.0903 | 34.3125 | 39.5640 | 26 | 42.2234 | 78.1898 |
0.2519 | 6.5 | 16250 | 1.2232 | 0.7299 | 0.7321 | 0.7295 | 0.7321 | 4.1640 | 83.4807 | 2.0903 | 34.3125 | 39.5640 | 26 | 42.2237 | 78.1898 |
0.2482 | 7.0 | 17500 | 1.2532 | 0.7274 | 0.7272 | 0.7282 | 0.7272 | 4.1578 | 83.4807 | 2.0903 | 34.3125 | 39.5640 | 26 | 42.2238 | 78.1898 |
0.1939 | 7.5 | 18750 | 1.3487 | 0.7222 | 0.7248 | 0.7215 | 0.7248 | 4.1702 | 83.4807 | 2.0903 | 34.3125 | 39.5640 | 26 | 42.2241 | 78.1898 |
0.1992 | 8.0 | 20000 | 1.3886 | 0.7197 | 0.7186 | 0.7218 | 0.7186 | 4.1572 | 83.4807 | 2.0903 | 34.3125 | 39.5640 | 27 | 42.2247 | 78.1898 |
0.1511 | 8.5 | 21250 | 1.4716 | 0.7197 | 0.7195 | 0.7204 | 0.7195 | 4.1566 | 83.4807 | 2.0903 | 34.3125 | 39.5640 | 25 | 42.2249 | 78.1898 |
0.1563 | 9.0 | 22500 | 1.4829 | 0.7223 | 0.7237 | 0.7221 | 0.7237 | 4.1650 | 83.4807 | 2.0903 | 34.3125 | 39.5640 | 27 | 42.2249 | 78.1898 |
0.1286 | 9.5 | 23750 | 1.5533 | 0.7210 | 0.7217 | 0.7210 | 0.7217 | 4.1784 | 83.4807 | 2.0903 | 34.3125 | 39.5640 | 26 | 42.2251 | 78.1898 |
0.1223 | 10.0 | 25000 | 1.5718 | 0.7212 | 0.7212 | 0.7217 | 0.7212 | 4.1618 | 83.4807 | 2.0903 | 34.3125 | 39.5640 | 26 | 42.2251 | 78.1898 |
Framework versions
- Transformers 4.30.2
- Pytorch 2.0.1+cu118
- Datasets 2.13.1
- Tokenizers 0.13.3