Astronomy hypothesis generation with Falcon-7B

<!-- This model generates astronomy abstracts. -->

It was fine-tuned on several thousand astronomy abstracts collected on Arxiv.

Model Details

from transformers import AutoModelForCausalLM, AutoTokenizer
import transformers
import torch

online_model = AutoModelForCausalLM.from_pretrained("universeTBD/falcon-7b-abstracts-tiny", torch_dtype=torch.bfloat16,
                                                    device_map="auto", trust_remote_code=True)

tokenizer = AutoTokenizer.from_pretrained("tiiuae/falcon-7b")
pipeline = transformers.pipeline(
    "text-generation",
    model=online_model,
    tokenizer=tokenizer,
    torch_dtype=torch.bfloat16,
    trust_remote_code=True,
    device_map="auto",
)

sequences = pipeline(
   "### Instruction: Generate a scientific hypothesis about astronomy in the style of an Arxiv paper.\n ### Hypothesis:",
    max_length=500,
    do_sample=True,
    top_k=10,
    num_return_sequences=1,
    eos_token_id=tokenizer.eos_token_id,
)

def format_output(output):
    output = output.replace("\n", " ")  # Replace newline characters with spaces
    output = output.replace("\\n", " ")
    parts = output.split("###")  # Split string at '###'
    
    # Get and clean instruction part
    instruction = parts[1].strip() 
    
    # Get and clean hypothesis part
    hypothesis = parts[2].strip()  
    
    # Format the output
    formatted_output = f"{instruction}\n\n{hypothesis}"
    
    return formatted_output

format_output(sequences[0]['generated_text'])

Example generation:

Using 3D positions and K magnitudes of stars from the Gaia DR2 for which we have spectroscopic information from the RAVE database, we derive distances to the stellar populations in different parts of the bulge of the Milky Way. We find that the metal-rich (blue) stars in the inner part of the bulge have a disk component, while the metal-poor (red) stars in the inner part of the bulge do not have a discernible disk component and are dominated by halo components. Spectral parameters indicate that the red stars are enhanced in nitrogen and the blue stars are enhanced in iron, suggesting that the red stars may have a faster rotation curve than the blue stars. These morpho-chemical properties are similar to those of the classical thick disk populations. However, the inner part of the bulge stars with metallicity about -1.0 <[Fe/H] < -0.5 do not have a discernible disk component and are also found in the halo component. Stars with metallicity about -2.5 <[Fe/H] < -1.0 in the inner part of the bulge also have a faint halo component and are enhanced in nitrogen. We suggest that the metal-rich blue stars in the inner part of the bulge came from a disk formed in situ and the red stars in the inner part of the bulge came from two different disk-to-halo transition zones which may be associated with the late low-density and late high-density spiral arms, respectively.

Model Description

<!-- Provide a longer summary of what this model is. -->

Model Sources [optional]

<!-- Provide the basic links for the model. -->

Uses

<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->

Direct Use

<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->

[More Information Needed]

Downstream Use [optional]

<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->

[More Information Needed]

Out-of-Scope Use

<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->

[More Information Needed]

Bias, Risks, and Limitations

<!-- This section is meant to convey both technical and sociotechnical limitations. -->

[More Information Needed]

Recommendations

<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->

Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.

How to Get Started with the Model

Use the code below to get started with the model.

[More Information Needed]

Training Details

Training Data

<!-- This should link to a Data Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->

[More Information Needed]

Training Procedure

<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->

Preprocessing [optional]

[More Information Needed]

Training Hyperparameters

Speeds, Sizes, Times [optional]

<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->

[More Information Needed]

Evaluation

<!-- This section describes the evaluation protocols and provides the results. -->

Testing Data, Factors & Metrics

Testing Data

<!-- This should link to a Data Card if possible. -->

[More Information Needed]

Factors

<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->

[More Information Needed]

Metrics

<!-- These are the evaluation metrics being used, ideally with a description of why. -->

[More Information Needed]

Results

[More Information Needed]

Summary

Model Examination [optional]

<!-- Relevant interpretability work for the model goes here -->

[More Information Needed]

Environmental Impact

<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->

Carbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).

Technical Specifications [optional]

Model Architecture and Objective

[More Information Needed]

Compute Infrastructure

[More Information Needed]

Hardware

[More Information Needed]

Software

[More Information Needed]

Citation [optional]

<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->

BibTeX:

[More Information Needed]

APA:

[More Information Needed]

Glossary [optional]

<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->

[More Information Needed]

More Information [optional]

[More Information Needed]

Model Card Authors [optional]

[More Information Needed]

Model Card Contact

[More Information Needed]