<!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. -->
moritzwilke/distilbert-base-uncased-finetuned-squad
This model is a fine-tuned version of distilbert-base-uncased on an unknown dataset. It achieves the following results on the evaluation set:
- Train Loss: 1.6756
 - Train End Logits Accuracy: 0.5691
 - Train Start Logits Accuracy: 0.5327
 - Validation Loss: 1.2714
 - Validation End Logits Accuracy: 0.6582
 - Validation Start Logits Accuracy: 0.6184
 - Epoch: 0
 
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': None, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': True, 'is_legacy_optimizer': False, 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 2766, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False}
 - training_precision: float32
 
Training results
| Train Loss | Train End Logits Accuracy | Train Start Logits Accuracy | Validation Loss | Validation End Logits Accuracy | Validation Start Logits Accuracy | Epoch | 
|---|---|---|---|---|---|---|
| 1.6756 | 0.5691 | 0.5327 | 1.2714 | 0.6582 | 0.6184 | 0 | 
Framework versions
- Transformers 4.30.2
 - TensorFlow 2.12.0
 - Datasets 2.13.1
 - Tokenizers 0.13.3