<!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. -->
naltatis/distilbert-base-uncased-finetuned-squad
This model is a fine-tuned version of distilbert-base-uncased on an unknown dataset. It achieves the following results on the evaluation set:
- Train Loss: 1.0002
- Train End Logits Accuracy: 0.7231
- Train Start Logits Accuracy: 0.6883
- Validation Loss: 1.1339
- Validation End Logits Accuracy: 0.6926
- Validation Start Logits Accuracy: 0.6580
- Epoch: 1
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'Adam', 'learning_rate': {'module': 'keras.optimizers.schedules', 'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 11064, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, 'registered_name': None}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False}
- training_precision: float32
Training results
Train Loss | Train End Logits Accuracy | Train Start Logits Accuracy | Validation Loss | Validation End Logits Accuracy | Validation Start Logits Accuracy | Epoch |
---|---|---|---|---|---|---|
1.5428 | 0.5983 | 0.5604 | 1.1748 | 0.6817 | 0.6417 | 0 |
1.0002 | 0.7231 | 0.6883 | 1.1339 | 0.6926 | 0.6580 | 1 |
Framework versions
- Transformers 4.30.2
- TensorFlow 2.13.0
- Datasets 2.13.1
- Tokenizers 0.13.3