<!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. -->
briziel/distilbert-base-uncased-finetuned-squad
This model is a fine-tuned version of distilbert-base-uncased on an unknown dataset. It achieves the following results on the evaluation set:
- Train Loss: 0.9786
 - Train End Logits Accuracy: 0.7287
 - Train Start Logits Accuracy: 0.6898
 - Validation Loss: 1.1064
 - Validation End Logits Accuracy: 0.6984
 - Validation Start Logits Accuracy: 0.6615
 - Epoch: 1
 
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'Adam', 'learning_rate': {'module': 'keras.optimizers.schedules', 'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 11064, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, 'registered_name': None}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False}
 - training_precision: float32
 
Training results
| Train Loss | Train End Logits Accuracy | Train Start Logits Accuracy | Validation Loss | Validation End Logits Accuracy | Validation Start Logits Accuracy | Epoch | 
|---|---|---|---|---|---|---|
| 1.5081 | 0.6050 | 0.5681 | 1.1607 | 0.6881 | 0.6499 | 0 | 
| 0.9786 | 0.7287 | 0.6898 | 1.1064 | 0.6984 | 0.6615 | 1 | 
Framework versions
- Transformers 4.30.2
 - TensorFlow 2.13.0
 - Datasets 2.13.1
 - Tokenizers 0.13.3