food-classifier
This model is a fine-tuned version of google/vit-base-patch16-224-in21k on the food101 dataset. It achieves the following results on the evaluation set:
- Train Loss: 0.2136
- Validation Loss: 0.2284
- Train Accuracy: 0.94
- Epoch: 4
Model description
This is an image classification model fine tuned from the Google Vision Transformer (ViT) to classify images of food.
Intended uses & limitations
For messing around!
Training and evaluation data
The training set contained 101 food classes, over a dataset of 101,000 images. The train/eval split was 80/20
Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 3e-05, 'decay_steps': 20000, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01}
- training_precision: float32
Training results
Train Loss | Validation Loss | Train Accuracy | Epoch |
---|---|---|---|
0.3409 | 0.2903 | 0.932 | 0 |
0.2838 | 0.2897 | 0.917 | 1 |
0.2415 | 0.2869 | 0.914 | 2 |
0.2143 | 0.2630 | 0.924 | 3 |
0.2136 | 0.2284 | 0.94 | 4 |
Framework versions
- Transformers 4.30.2
- TensorFlow 2.12.0
- Datasets 2.13.1
- Tokenizers 0.13.3