<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. -->
vit-tiny_tobacco3482_hint_
This model is a fine-tuned version of WinKawaks/vit-tiny-patch16-224 on the None dataset. It achieves the following results on the evaluation set:
- Loss: 56.8340
- Accuracy: 0.85
- Brier Loss: 0.2391
- Nll: 1.2700
- F1 Micro: 0.85
- F1 Macro: 0.8414
- Ece: 0.1228
- Aurc: 0.0436
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 100
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | Brier Loss | Nll | F1 Micro | F1 Macro | Ece | Aurc |
---|---|---|---|---|---|---|---|---|---|---|
No log | 1.0 | 25 | 59.9929 | 0.25 | 0.8706 | 4.9000 | 0.25 | 0.1856 | 0.3000 | 0.7819 |
No log | 2.0 | 50 | 59.2119 | 0.54 | 0.5951 | 2.8481 | 0.54 | 0.4540 | 0.2868 | 0.2585 |
No log | 3.0 | 75 | 58.7608 | 0.675 | 0.4417 | 1.6161 | 0.675 | 0.6086 | 0.2356 | 0.1335 |
No log | 4.0 | 100 | 58.5280 | 0.75 | 0.3897 | 1.7733 | 0.75 | 0.7378 | 0.2211 | 0.1173 |
No log | 5.0 | 125 | 58.2236 | 0.81 | 0.3119 | 1.5196 | 0.81 | 0.7653 | 0.1573 | 0.0769 |
No log | 6.0 | 150 | 58.0804 | 0.805 | 0.3048 | 1.6467 | 0.805 | 0.7766 | 0.1355 | 0.0599 |
No log | 7.0 | 175 | 58.3912 | 0.645 | 0.5320 | 2.1424 | 0.645 | 0.6017 | 0.2645 | 0.1497 |
No log | 8.0 | 200 | 57.7380 | 0.755 | 0.3634 | 1.4581 | 0.755 | 0.7173 | 0.1913 | 0.0920 |
No log | 9.0 | 225 | 57.5060 | 0.805 | 0.2939 | 1.4346 | 0.805 | 0.7860 | 0.1603 | 0.0636 |
No log | 10.0 | 250 | 57.5367 | 0.805 | 0.3345 | 1.7441 | 0.805 | 0.7872 | 0.1748 | 0.0727 |
No log | 11.0 | 275 | 57.7193 | 0.725 | 0.4195 | 1.7223 | 0.7250 | 0.6706 | 0.2121 | 0.0984 |
No log | 12.0 | 300 | 57.5447 | 0.785 | 0.3435 | 1.7574 | 0.785 | 0.7772 | 0.1667 | 0.0678 |
No log | 13.0 | 325 | 57.4991 | 0.795 | 0.3335 | 1.5337 | 0.795 | 0.7724 | 0.1685 | 0.0895 |
No log | 14.0 | 350 | 57.3536 | 0.835 | 0.2942 | 1.5660 | 0.835 | 0.8089 | 0.1451 | 0.0594 |
No log | 15.0 | 375 | 57.5013 | 0.815 | 0.3096 | 1.7294 | 0.815 | 0.7978 | 0.1579 | 0.0696 |
No log | 16.0 | 400 | 57.3610 | 0.835 | 0.2763 | 1.7078 | 0.835 | 0.8182 | 0.1354 | 0.0526 |
No log | 17.0 | 425 | 57.3415 | 0.825 | 0.3002 | 1.3895 | 0.825 | 0.8249 | 0.1455 | 0.0651 |
No log | 18.0 | 450 | 57.4573 | 0.79 | 0.3649 | 1.6263 | 0.79 | 0.7688 | 0.1936 | 0.0943 |
No log | 19.0 | 475 | 57.5728 | 0.8 | 0.3261 | 1.7616 | 0.8000 | 0.7461 | 0.1669 | 0.0659 |
57.5035 | 20.0 | 500 | 57.3014 | 0.835 | 0.2982 | 1.3501 | 0.835 | 0.8175 | 0.1442 | 0.0549 |
57.5035 | 21.0 | 525 | 57.3792 | 0.82 | 0.3206 | 1.4779 | 0.82 | 0.7957 | 0.1698 | 0.0568 |
57.5035 | 22.0 | 550 | 57.6968 | 0.795 | 0.3627 | 1.8539 | 0.795 | 0.7468 | 0.1809 | 0.0698 |
57.5035 | 23.0 | 575 | 57.4539 | 0.8 | 0.3465 | 1.4210 | 0.8000 | 0.7787 | 0.1736 | 0.0776 |
57.5035 | 24.0 | 600 | 57.1479 | 0.815 | 0.2998 | 1.3434 | 0.815 | 0.7989 | 0.1513 | 0.0607 |
57.5035 | 25.0 | 625 | 57.3390 | 0.79 | 0.3482 | 1.2595 | 0.79 | 0.7803 | 0.1635 | 0.0652 |
57.5035 | 26.0 | 650 | 57.4046 | 0.82 | 0.3130 | 1.5825 | 0.82 | 0.8060 | 0.1495 | 0.0692 |
57.5035 | 27.0 | 675 | 57.1398 | 0.835 | 0.2643 | 1.5441 | 0.835 | 0.8185 | 0.1317 | 0.0485 |
57.5035 | 28.0 | 700 | 57.4322 | 0.82 | 0.3217 | 1.5260 | 0.82 | 0.7912 | 0.1576 | 0.0643 |
57.5035 | 29.0 | 725 | 57.1362 | 0.87 | 0.2291 | 1.3903 | 0.87 | 0.8621 | 0.1104 | 0.0539 |
57.5035 | 30.0 | 750 | 57.1131 | 0.855 | 0.2511 | 1.1423 | 0.855 | 0.8451 | 0.1292 | 0.0492 |
57.5035 | 31.0 | 775 | 56.8690 | 0.845 | 0.2454 | 1.2822 | 0.845 | 0.8265 | 0.1254 | 0.0473 |
57.5035 | 32.0 | 800 | 56.8384 | 0.855 | 0.2220 | 1.2243 | 0.855 | 0.8453 | 0.1119 | 0.0382 |
57.5035 | 33.0 | 825 | 56.9461 | 0.855 | 0.2450 | 1.2192 | 0.855 | 0.8537 | 0.1276 | 0.0395 |
57.5035 | 34.0 | 850 | 56.9061 | 0.85 | 0.2450 | 1.2097 | 0.85 | 0.8337 | 0.1216 | 0.0408 |
57.5035 | 35.0 | 875 | 56.9100 | 0.86 | 0.2413 | 1.2197 | 0.8600 | 0.8546 | 0.1189 | 0.0387 |
57.5035 | 36.0 | 900 | 56.9087 | 0.855 | 0.2444 | 1.2098 | 0.855 | 0.8460 | 0.1281 | 0.0379 |
57.5035 | 37.0 | 925 | 56.8923 | 0.86 | 0.2438 | 1.2156 | 0.8600 | 0.8509 | 0.1259 | 0.0378 |
57.5035 | 38.0 | 950 | 56.8908 | 0.85 | 0.2450 | 1.2187 | 0.85 | 0.8397 | 0.1236 | 0.0390 |
57.5035 | 39.0 | 975 | 56.8591 | 0.855 | 0.2404 | 1.2063 | 0.855 | 0.8411 | 0.1326 | 0.0383 |
56.2493 | 40.0 | 1000 | 56.8479 | 0.86 | 0.2352 | 1.2142 | 0.8600 | 0.8539 | 0.1257 | 0.0386 |
56.2493 | 41.0 | 1025 | 56.8762 | 0.86 | 0.2365 | 1.2166 | 0.8600 | 0.8492 | 0.1171 | 0.0383 |
56.2493 | 42.0 | 1050 | 56.8551 | 0.865 | 0.2321 | 1.2078 | 0.865 | 0.8547 | 0.1183 | 0.0383 |
56.2493 | 43.0 | 1075 | 56.8913 | 0.87 | 0.2360 | 1.2013 | 0.87 | 0.8617 | 0.1187 | 0.0410 |
56.2493 | 44.0 | 1100 | 56.8523 | 0.86 | 0.2359 | 1.2094 | 0.8600 | 0.8506 | 0.1214 | 0.0399 |
56.2493 | 45.0 | 1125 | 56.8546 | 0.87 | 0.2330 | 1.2028 | 0.87 | 0.8650 | 0.1233 | 0.0384 |
56.2493 | 46.0 | 1150 | 56.8536 | 0.865 | 0.2323 | 1.2099 | 0.865 | 0.8579 | 0.1230 | 0.0389 |
56.2493 | 47.0 | 1175 | 56.8490 | 0.865 | 0.2346 | 1.2095 | 0.865 | 0.8580 | 0.1139 | 0.0411 |
56.2493 | 48.0 | 1200 | 56.8569 | 0.88 | 0.2295 | 1.1277 | 0.88 | 0.8693 | 0.1238 | 0.0381 |
56.2493 | 49.0 | 1225 | 56.8528 | 0.875 | 0.2292 | 1.1966 | 0.875 | 0.8681 | 0.1264 | 0.0394 |
56.2493 | 50.0 | 1250 | 56.8462 | 0.875 | 0.2309 | 1.1215 | 0.875 | 0.8690 | 0.1178 | 0.0424 |
56.2493 | 51.0 | 1275 | 56.8438 | 0.87 | 0.2285 | 1.1259 | 0.87 | 0.8631 | 0.1304 | 0.0404 |
56.2493 | 52.0 | 1300 | 56.8660 | 0.865 | 0.2334 | 1.1231 | 0.865 | 0.8623 | 0.1343 | 0.0416 |
56.2493 | 53.0 | 1325 | 56.8802 | 0.885 | 0.2273 | 1.1220 | 0.885 | 0.8784 | 0.1202 | 0.0415 |
56.2493 | 54.0 | 1350 | 56.8581 | 0.885 | 0.2261 | 1.1938 | 0.885 | 0.8772 | 0.1286 | 0.0408 |
56.2493 | 55.0 | 1375 | 56.8348 | 0.875 | 0.2301 | 1.1953 | 0.875 | 0.8675 | 0.1267 | 0.0404 |
56.2493 | 56.0 | 1400 | 56.8489 | 0.87 | 0.2336 | 1.1974 | 0.87 | 0.8589 | 0.1079 | 0.0393 |
56.2493 | 57.0 | 1425 | 56.8508 | 0.87 | 0.2307 | 1.1928 | 0.87 | 0.8648 | 0.1143 | 0.0399 |
56.2493 | 58.0 | 1450 | 56.8172 | 0.875 | 0.2198 | 1.2030 | 0.875 | 0.8675 | 0.1062 | 0.0378 |
56.2493 | 59.0 | 1475 | 56.8662 | 0.87 | 0.2287 | 1.1354 | 0.87 | 0.8659 | 0.1198 | 0.0410 |
56.0552 | 60.0 | 1500 | 56.8437 | 0.88 | 0.2241 | 1.1968 | 0.88 | 0.8735 | 0.1127 | 0.0407 |
56.0552 | 61.0 | 1525 | 56.8468 | 0.87 | 0.2303 | 1.1998 | 0.87 | 0.8648 | 0.1170 | 0.0428 |
56.0552 | 62.0 | 1550 | 56.8575 | 0.865 | 0.2299 | 1.1940 | 0.865 | 0.8599 | 0.1171 | 0.0411 |
56.0552 | 63.0 | 1575 | 56.8451 | 0.875 | 0.2291 | 1.1981 | 0.875 | 0.8697 | 0.1225 | 0.0395 |
56.0552 | 64.0 | 1600 | 56.8355 | 0.875 | 0.2255 | 1.2009 | 0.875 | 0.8675 | 0.1137 | 0.0394 |
56.0552 | 65.0 | 1625 | 56.8490 | 0.875 | 0.2338 | 1.2653 | 0.875 | 0.8697 | 0.1259 | 0.0413 |
56.0552 | 66.0 | 1650 | 56.8206 | 0.87 | 0.2271 | 1.2860 | 0.87 | 0.8603 | 0.1197 | 0.0379 |
56.0552 | 67.0 | 1675 | 56.8592 | 0.87 | 0.2307 | 1.1992 | 0.87 | 0.8636 | 0.1210 | 0.0408 |
56.0552 | 68.0 | 1700 | 56.8339 | 0.865 | 0.2290 | 1.1968 | 0.865 | 0.8599 | 0.1101 | 0.0386 |
56.0552 | 69.0 | 1725 | 56.8533 | 0.87 | 0.2336 | 1.2625 | 0.87 | 0.8636 | 0.1154 | 0.0406 |
56.0552 | 70.0 | 1750 | 56.8281 | 0.87 | 0.2328 | 1.2012 | 0.87 | 0.8659 | 0.1229 | 0.0406 |
56.0552 | 71.0 | 1775 | 56.8431 | 0.875 | 0.2335 | 1.2557 | 0.875 | 0.8697 | 0.1318 | 0.0398 |
56.0552 | 72.0 | 1800 | 56.8396 | 0.865 | 0.2321 | 1.2659 | 0.865 | 0.8599 | 0.1165 | 0.0397 |
56.0552 | 73.0 | 1825 | 56.8229 | 0.86 | 0.2302 | 1.2615 | 0.8600 | 0.8524 | 0.1258 | 0.0402 |
56.0552 | 74.0 | 1850 | 56.8445 | 0.87 | 0.2344 | 1.2371 | 0.87 | 0.8659 | 0.1202 | 0.0393 |
56.0552 | 75.0 | 1875 | 56.8475 | 0.865 | 0.2341 | 1.2660 | 0.865 | 0.8599 | 0.1202 | 0.0423 |
56.0552 | 76.0 | 1900 | 56.8338 | 0.86 | 0.2320 | 1.2643 | 0.8600 | 0.8524 | 0.1296 | 0.0422 |
56.0552 | 77.0 | 1925 | 56.8481 | 0.87 | 0.2353 | 1.2665 | 0.87 | 0.8659 | 0.1266 | 0.0426 |
56.0552 | 78.0 | 1950 | 56.8328 | 0.865 | 0.2323 | 1.2584 | 0.865 | 0.8599 | 0.1128 | 0.0424 |
56.0552 | 79.0 | 1975 | 56.8382 | 0.86 | 0.2363 | 1.2658 | 0.8600 | 0.8553 | 0.1273 | 0.0425 |
55.9822 | 80.0 | 2000 | 56.8260 | 0.86 | 0.2354 | 1.2710 | 0.8600 | 0.8553 | 0.1129 | 0.0430 |
55.9822 | 81.0 | 2025 | 56.8474 | 0.86 | 0.2398 | 1.2679 | 0.8600 | 0.8553 | 0.1212 | 0.0433 |
55.9822 | 82.0 | 2050 | 56.8105 | 0.855 | 0.2320 | 1.2655 | 0.855 | 0.8478 | 0.1269 | 0.0423 |
55.9822 | 83.0 | 2075 | 56.8240 | 0.86 | 0.2347 | 1.2651 | 0.8600 | 0.8524 | 0.1312 | 0.0425 |
55.9822 | 84.0 | 2100 | 56.8350 | 0.86 | 0.2353 | 1.2690 | 0.8600 | 0.8553 | 0.1225 | 0.0435 |
55.9822 | 85.0 | 2125 | 56.8317 | 0.855 | 0.2371 | 1.2674 | 0.855 | 0.8478 | 0.1211 | 0.0433 |
55.9822 | 86.0 | 2150 | 56.8270 | 0.855 | 0.2364 | 1.2646 | 0.855 | 0.8478 | 0.1270 | 0.0433 |
55.9822 | 87.0 | 2175 | 56.8275 | 0.855 | 0.2359 | 1.2660 | 0.855 | 0.8478 | 0.1167 | 0.0423 |
55.9822 | 88.0 | 2200 | 56.8426 | 0.855 | 0.2385 | 1.2683 | 0.855 | 0.8478 | 0.1239 | 0.0428 |
55.9822 | 89.0 | 2225 | 56.8376 | 0.855 | 0.2368 | 1.2676 | 0.855 | 0.8478 | 0.1239 | 0.0426 |
55.9822 | 90.0 | 2250 | 56.8358 | 0.855 | 0.2382 | 1.2670 | 0.855 | 0.8451 | 0.1213 | 0.0435 |
55.9822 | 91.0 | 2275 | 56.8254 | 0.86 | 0.2374 | 1.2687 | 0.8600 | 0.8536 | 0.1308 | 0.0432 |
55.9822 | 92.0 | 2300 | 56.8269 | 0.855 | 0.2359 | 1.2684 | 0.855 | 0.8476 | 0.1223 | 0.0425 |
55.9822 | 93.0 | 2325 | 56.8324 | 0.85 | 0.2381 | 1.2708 | 0.85 | 0.8414 | 0.1224 | 0.0432 |
55.9822 | 94.0 | 2350 | 56.8344 | 0.85 | 0.2384 | 1.2682 | 0.85 | 0.8414 | 0.1222 | 0.0433 |
55.9822 | 95.0 | 2375 | 56.8344 | 0.85 | 0.2387 | 1.2708 | 0.85 | 0.8414 | 0.1228 | 0.0434 |
55.9822 | 96.0 | 2400 | 56.8342 | 0.85 | 0.2389 | 1.2687 | 0.85 | 0.8414 | 0.1222 | 0.0432 |
55.9822 | 97.0 | 2425 | 56.8339 | 0.85 | 0.2387 | 1.2713 | 0.85 | 0.8414 | 0.1222 | 0.0433 |
55.9822 | 98.0 | 2450 | 56.8342 | 0.85 | 0.2393 | 1.2708 | 0.85 | 0.8414 | 0.1228 | 0.0437 |
55.9822 | 99.0 | 2475 | 56.8325 | 0.85 | 0.2390 | 1.2703 | 0.85 | 0.8414 | 0.1228 | 0.0436 |
55.9517 | 100.0 | 2500 | 56.8340 | 0.85 | 0.2391 | 1.2700 | 0.85 | 0.8414 | 0.1228 | 0.0436 |
Framework versions
- Transformers 4.26.1
- Pytorch 1.13.1.post200
- Datasets 2.9.0
- Tokenizers 0.13.2