<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. -->
39-tiny_tobacco3482
This model is a fine-tuned version of WinKawaks/vit-tiny-patch16-224 on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.0652
- Accuracy: 0.68
- Brier Loss: 0.8297
- Nll: 1.9403
- F1 Micro: 0.68
- F1 Macro: 0.5899
- Ece: 0.5728
- Aurc: 0.1321
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 100
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | Brier Loss | Nll | F1 Micro | F1 Macro | Ece | Aurc |
---|---|---|---|---|---|---|---|---|---|---|
No log | 1.0 | 25 | 0.0877 | 0.11 | 0.8983 | 8.4701 | 0.11 | 0.0377 | 0.1765 | 0.9065 |
No log | 2.0 | 50 | 0.0811 | 0.09 | 0.8984 | 6.6861 | 0.09 | 0.0364 | 0.1641 | 0.9033 |
No log | 3.0 | 75 | 0.0803 | 0.165 | 0.8981 | 7.2209 | 0.165 | 0.0520 | 0.2115 | 0.7480 |
No log | 4.0 | 100 | 0.0799 | 0.17 | 0.8977 | 7.1709 | 0.17 | 0.0713 | 0.2184 | 0.6439 |
No log | 5.0 | 125 | 0.0794 | 0.15 | 0.8970 | 7.1655 | 0.15 | 0.0553 | 0.2075 | 0.6278 |
No log | 6.0 | 150 | 0.0786 | 0.225 | 0.8959 | 6.1378 | 0.225 | 0.1083 | 0.2511 | 0.5827 |
No log | 7.0 | 175 | 0.0777 | 0.275 | 0.8944 | 5.1450 | 0.275 | 0.1053 | 0.2840 | 0.5127 |
No log | 8.0 | 200 | 0.0767 | 0.305 | 0.8920 | 5.0689 | 0.305 | 0.1177 | 0.3095 | 0.4372 |
No log | 9.0 | 225 | 0.0756 | 0.305 | 0.8893 | 4.6689 | 0.305 | 0.1015 | 0.3114 | 0.4279 |
No log | 10.0 | 250 | 0.0747 | 0.325 | 0.8865 | 5.1088 | 0.325 | 0.1067 | 0.3257 | 0.3891 |
No log | 11.0 | 275 | 0.0738 | 0.345 | 0.8803 | 4.9911 | 0.345 | 0.1297 | 0.3418 | 0.3672 |
No log | 12.0 | 300 | 0.0729 | 0.405 | 0.8748 | 4.7892 | 0.405 | 0.1649 | 0.3774 | 0.3276 |
No log | 13.0 | 325 | 0.0721 | 0.395 | 0.8696 | 4.6346 | 0.395 | 0.1561 | 0.3723 | 0.3221 |
No log | 14.0 | 350 | 0.0713 | 0.44 | 0.8676 | 3.8051 | 0.44 | 0.1780 | 0.4047 | 0.2743 |
No log | 15.0 | 375 | 0.0705 | 0.43 | 0.8612 | 3.6440 | 0.4300 | 0.1893 | 0.3994 | 0.2701 |
No log | 16.0 | 400 | 0.0698 | 0.48 | 0.8569 | 3.4952 | 0.48 | 0.2607 | 0.4216 | 0.2640 |
No log | 17.0 | 425 | 0.0690 | 0.54 | 0.8533 | 3.2018 | 0.54 | 0.3042 | 0.4771 | 0.2168 |
No log | 18.0 | 450 | 0.0683 | 0.54 | 0.8500 | 2.7042 | 0.54 | 0.3161 | 0.4677 | 0.2075 |
No log | 19.0 | 475 | 0.0679 | 0.6 | 0.8469 | 2.5343 | 0.6 | 0.4246 | 0.5186 | 0.1865 |
0.0767 | 20.0 | 500 | 0.0677 | 0.615 | 0.8455 | 2.6485 | 0.615 | 0.4407 | 0.5207 | 0.1908 |
0.0767 | 21.0 | 525 | 0.0673 | 0.625 | 0.8463 | 2.2841 | 0.625 | 0.4471 | 0.5369 | 0.1558 |
0.0767 | 22.0 | 550 | 0.0667 | 0.645 | 0.8398 | 2.4032 | 0.645 | 0.4633 | 0.5462 | 0.1500 |
0.0767 | 23.0 | 575 | 0.0664 | 0.63 | 0.8388 | 2.4376 | 0.63 | 0.4600 | 0.5356 | 0.1583 |
0.0767 | 24.0 | 600 | 0.0663 | 0.645 | 0.8371 | 2.3057 | 0.645 | 0.4731 | 0.5443 | 0.1437 |
0.0767 | 25.0 | 625 | 0.0662 | 0.635 | 0.8386 | 2.2486 | 0.635 | 0.4606 | 0.5425 | 0.1515 |
0.0767 | 26.0 | 650 | 0.0661 | 0.63 | 0.8374 | 2.2367 | 0.63 | 0.4543 | 0.5423 | 0.1549 |
0.0767 | 27.0 | 675 | 0.0660 | 0.64 | 0.8358 | 2.1278 | 0.64 | 0.4554 | 0.5486 | 0.1350 |
0.0767 | 28.0 | 700 | 0.0660 | 0.64 | 0.8360 | 2.2416 | 0.64 | 0.4726 | 0.5363 | 0.1429 |
0.0767 | 29.0 | 725 | 0.0660 | 0.67 | 0.8364 | 2.1574 | 0.67 | 0.4990 | 0.5648 | 0.1264 |
0.0767 | 30.0 | 750 | 0.0659 | 0.665 | 0.8357 | 2.2015 | 0.665 | 0.5113 | 0.5645 | 0.1383 |
0.0767 | 31.0 | 775 | 0.0658 | 0.65 | 0.8347 | 2.1367 | 0.65 | 0.4995 | 0.5522 | 0.1461 |
0.0767 | 32.0 | 800 | 0.0656 | 0.67 | 0.8341 | 2.1025 | 0.67 | 0.5110 | 0.5666 | 0.1307 |
0.0767 | 33.0 | 825 | 0.0656 | 0.645 | 0.8354 | 2.0398 | 0.645 | 0.5034 | 0.5442 | 0.1334 |
0.0767 | 34.0 | 850 | 0.0656 | 0.67 | 0.8346 | 2.1934 | 0.67 | 0.5112 | 0.5569 | 0.1299 |
0.0767 | 35.0 | 875 | 0.0658 | 0.665 | 0.8353 | 2.0671 | 0.665 | 0.5255 | 0.5646 | 0.1295 |
0.0767 | 36.0 | 900 | 0.0655 | 0.665 | 0.8320 | 2.0168 | 0.665 | 0.5138 | 0.5680 | 0.1306 |
0.0767 | 37.0 | 925 | 0.0655 | 0.675 | 0.8315 | 2.0974 | 0.675 | 0.5229 | 0.5672 | 0.1333 |
0.0767 | 38.0 | 950 | 0.0655 | 0.675 | 0.8341 | 2.0624 | 0.675 | 0.5457 | 0.5750 | 0.1256 |
0.0767 | 39.0 | 975 | 0.0653 | 0.69 | 0.8321 | 2.0556 | 0.69 | 0.5498 | 0.5856 | 0.1250 |
0.0625 | 40.0 | 1000 | 0.0653 | 0.69 | 0.8330 | 1.9627 | 0.69 | 0.5812 | 0.5765 | 0.1243 |
0.0625 | 41.0 | 1025 | 0.0653 | 0.705 | 0.8335 | 2.0491 | 0.705 | 0.5900 | 0.5919 | 0.1155 |
0.0625 | 42.0 | 1050 | 0.0653 | 0.705 | 0.8335 | 2.0357 | 0.705 | 0.5984 | 0.5945 | 0.1250 |
0.0625 | 43.0 | 1075 | 0.0652 | 0.7 | 0.8316 | 2.0326 | 0.7 | 0.5957 | 0.5932 | 0.1230 |
0.0625 | 44.0 | 1100 | 0.0653 | 0.69 | 0.8323 | 2.0244 | 0.69 | 0.5904 | 0.5911 | 0.1252 |
0.0625 | 45.0 | 1125 | 0.0653 | 0.68 | 0.8310 | 2.0410 | 0.68 | 0.5644 | 0.5699 | 0.1305 |
0.0625 | 46.0 | 1150 | 0.0653 | 0.695 | 0.8323 | 2.0288 | 0.695 | 0.5944 | 0.5837 | 0.1251 |
0.0625 | 47.0 | 1175 | 0.0652 | 0.685 | 0.8312 | 1.9613 | 0.685 | 0.5894 | 0.5834 | 0.1244 |
0.0625 | 48.0 | 1200 | 0.0652 | 0.685 | 0.8312 | 1.9620 | 0.685 | 0.5753 | 0.5728 | 0.1321 |
0.0625 | 49.0 | 1225 | 0.0652 | 0.695 | 0.8317 | 1.9706 | 0.695 | 0.5962 | 0.5837 | 0.1291 |
0.0625 | 50.0 | 1250 | 0.0651 | 0.69 | 0.8314 | 1.9661 | 0.69 | 0.5902 | 0.5759 | 0.1315 |
0.0625 | 51.0 | 1275 | 0.0652 | 0.68 | 0.8319 | 1.9542 | 0.68 | 0.5695 | 0.5704 | 0.1288 |
0.0625 | 52.0 | 1300 | 0.0651 | 0.695 | 0.8308 | 1.9577 | 0.695 | 0.5834 | 0.5823 | 0.1276 |
0.0625 | 53.0 | 1325 | 0.0652 | 0.67 | 0.8315 | 1.8876 | 0.67 | 0.5604 | 0.5680 | 0.1326 |
0.0625 | 54.0 | 1350 | 0.0651 | 0.68 | 0.8318 | 1.8731 | 0.68 | 0.5925 | 0.5644 | 0.1317 |
0.0625 | 55.0 | 1375 | 0.0651 | 0.7 | 0.8292 | 1.9448 | 0.7 | 0.5856 | 0.5903 | 0.1214 |
0.0625 | 56.0 | 1400 | 0.0652 | 0.705 | 0.8310 | 2.0042 | 0.705 | 0.6059 | 0.5881 | 0.1195 |
0.0625 | 57.0 | 1425 | 0.0651 | 0.685 | 0.8309 | 1.9467 | 0.685 | 0.5832 | 0.5734 | 0.1273 |
0.0625 | 58.0 | 1450 | 0.0651 | 0.705 | 0.8306 | 1.9480 | 0.705 | 0.6064 | 0.5956 | 0.1227 |
0.0625 | 59.0 | 1475 | 0.0651 | 0.695 | 0.8302 | 1.9453 | 0.695 | 0.5998 | 0.5806 | 0.1310 |
0.0604 | 60.0 | 1500 | 0.0651 | 0.68 | 0.8305 | 1.8892 | 0.68 | 0.5813 | 0.5643 | 0.1276 |
0.0604 | 61.0 | 1525 | 0.0651 | 0.725 | 0.8302 | 1.9304 | 0.7250 | 0.6346 | 0.6022 | 0.1194 |
0.0604 | 62.0 | 1550 | 0.0651 | 0.685 | 0.8303 | 1.8831 | 0.685 | 0.5773 | 0.5815 | 0.1322 |
0.0604 | 63.0 | 1575 | 0.0650 | 0.71 | 0.8299 | 1.9502 | 0.7100 | 0.6140 | 0.5944 | 0.1257 |
0.0604 | 64.0 | 1600 | 0.0651 | 0.68 | 0.8296 | 1.9407 | 0.68 | 0.5701 | 0.5727 | 0.1337 |
0.0604 | 65.0 | 1625 | 0.0651 | 0.695 | 0.8309 | 1.9413 | 0.695 | 0.5995 | 0.5884 | 0.1234 |
0.0604 | 66.0 | 1650 | 0.0651 | 0.69 | 0.8298 | 1.9474 | 0.69 | 0.5865 | 0.5723 | 0.1293 |
0.0604 | 67.0 | 1675 | 0.0650 | 0.705 | 0.8298 | 1.8996 | 0.705 | 0.6109 | 0.5966 | 0.1258 |
0.0604 | 68.0 | 1700 | 0.0651 | 0.7 | 0.8298 | 1.9938 | 0.7 | 0.6089 | 0.5895 | 0.1283 |
0.0604 | 69.0 | 1725 | 0.0651 | 0.695 | 0.8296 | 1.9273 | 0.695 | 0.5923 | 0.5776 | 0.1251 |
0.0604 | 70.0 | 1750 | 0.0651 | 0.705 | 0.8297 | 1.8920 | 0.705 | 0.6162 | 0.5868 | 0.1323 |
0.0604 | 71.0 | 1775 | 0.0651 | 0.7 | 0.8304 | 1.9852 | 0.7 | 0.6123 | 0.5878 | 0.1282 |
0.0604 | 72.0 | 1800 | 0.0651 | 0.68 | 0.8310 | 1.9399 | 0.68 | 0.5963 | 0.5633 | 0.1345 |
0.0604 | 73.0 | 1825 | 0.0650 | 0.725 | 0.8302 | 1.9237 | 0.7250 | 0.6266 | 0.6029 | 0.1192 |
0.0604 | 74.0 | 1850 | 0.0651 | 0.68 | 0.8306 | 1.9521 | 0.68 | 0.5967 | 0.5745 | 0.1342 |
0.0604 | 75.0 | 1875 | 0.0651 | 0.695 | 0.8301 | 1.9911 | 0.695 | 0.6047 | 0.5841 | 0.1317 |
0.0604 | 76.0 | 1900 | 0.0651 | 0.695 | 0.8299 | 1.9333 | 0.695 | 0.5935 | 0.5715 | 0.1299 |
0.0604 | 77.0 | 1925 | 0.0651 | 0.695 | 0.8298 | 1.9429 | 0.695 | 0.6041 | 0.5679 | 0.1293 |
0.0604 | 78.0 | 1950 | 0.0651 | 0.695 | 0.8298 | 1.9367 | 0.695 | 0.6101 | 0.5792 | 0.1279 |
0.0604 | 79.0 | 1975 | 0.0651 | 0.695 | 0.8301 | 1.9934 | 0.695 | 0.6095 | 0.5898 | 0.1324 |
0.0596 | 80.0 | 2000 | 0.0651 | 0.7 | 0.8297 | 1.9332 | 0.7 | 0.6071 | 0.5778 | 0.1271 |
0.0596 | 81.0 | 2025 | 0.0651 | 0.685 | 0.8303 | 1.9457 | 0.685 | 0.5986 | 0.5807 | 0.1320 |
0.0596 | 82.0 | 2050 | 0.0651 | 0.7 | 0.8300 | 1.9337 | 0.7 | 0.6072 | 0.5896 | 0.1296 |
0.0596 | 83.0 | 2075 | 0.0651 | 0.685 | 0.8298 | 1.9424 | 0.685 | 0.5985 | 0.5753 | 0.1319 |
0.0596 | 84.0 | 2100 | 0.0651 | 0.7 | 0.8297 | 1.9407 | 0.7 | 0.6116 | 0.5847 | 0.1311 |
0.0596 | 85.0 | 2125 | 0.0651 | 0.685 | 0.8298 | 1.9364 | 0.685 | 0.5983 | 0.5841 | 0.1311 |
0.0596 | 86.0 | 2150 | 0.0651 | 0.685 | 0.8299 | 1.9345 | 0.685 | 0.5983 | 0.5806 | 0.1318 |
0.0596 | 87.0 | 2175 | 0.0652 | 0.685 | 0.8299 | 1.9402 | 0.685 | 0.5979 | 0.5778 | 0.1317 |
0.0596 | 88.0 | 2200 | 0.0651 | 0.685 | 0.8298 | 1.9385 | 0.685 | 0.5983 | 0.5726 | 0.1315 |
0.0596 | 89.0 | 2225 | 0.0652 | 0.68 | 0.8296 | 1.9367 | 0.68 | 0.5899 | 0.5732 | 0.1314 |
0.0596 | 90.0 | 2250 | 0.0652 | 0.68 | 0.8298 | 1.9383 | 0.68 | 0.5896 | 0.5782 | 0.1321 |
0.0596 | 91.0 | 2275 | 0.0652 | 0.68 | 0.8297 | 1.9408 | 0.68 | 0.5896 | 0.5782 | 0.1317 |
0.0596 | 92.0 | 2300 | 0.0652 | 0.68 | 0.8299 | 1.9370 | 0.68 | 0.5899 | 0.5701 | 0.1320 |
0.0596 | 93.0 | 2325 | 0.0652 | 0.68 | 0.8298 | 1.9395 | 0.68 | 0.5899 | 0.5754 | 0.1321 |
0.0596 | 94.0 | 2350 | 0.0652 | 0.68 | 0.8297 | 1.9392 | 0.68 | 0.5899 | 0.5701 | 0.1326 |
0.0596 | 95.0 | 2375 | 0.0652 | 0.68 | 0.8297 | 1.9393 | 0.68 | 0.5899 | 0.5651 | 0.1320 |
0.0596 | 96.0 | 2400 | 0.0652 | 0.68 | 0.8297 | 1.9397 | 0.68 | 0.5899 | 0.5701 | 0.1321 |
0.0596 | 97.0 | 2425 | 0.0652 | 0.68 | 0.8297 | 1.9400 | 0.68 | 0.5899 | 0.5676 | 0.1322 |
0.0596 | 98.0 | 2450 | 0.0652 | 0.68 | 0.8297 | 1.9391 | 0.68 | 0.5899 | 0.5677 | 0.1320 |
0.0596 | 99.0 | 2475 | 0.0652 | 0.68 | 0.8297 | 1.9397 | 0.68 | 0.5899 | 0.5701 | 0.1321 |
0.0592 | 100.0 | 2500 | 0.0652 | 0.68 | 0.8297 | 1.9403 | 0.68 | 0.5899 | 0.5728 | 0.1321 |
Framework versions
- Transformers 4.26.1
- Pytorch 1.13.1.post200
- Datasets 2.9.0
- Tokenizers 0.13.2