<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. -->
39-tiny_tobacco3482_kd_NKD_t1.0_g1.5
This model is a fine-tuned version of WinKawaks/vit-tiny-patch16-224 on the None dataset. It achieves the following results on the evaluation set:
- Loss: 4.0812
- Accuracy: 0.835
- Brier Loss: 0.2748
- Nll: 1.2215
- F1 Micro: 0.835
- F1 Macro: 0.8213
- Ece: 0.1443
- Aurc: 0.0548
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 128
- eval_batch_size: 128
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 100
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | Brier Loss | Nll | F1 Micro | F1 Macro | Ece | Aurc |
---|---|---|---|---|---|---|---|---|---|---|
No log | 1.0 | 7 | 5.1938 | 0.095 | 1.0201 | 8.6917 | 0.095 | 0.0778 | 0.3242 | 0.9009 |
No log | 2.0 | 14 | 4.3129 | 0.13 | 0.9109 | 8.2379 | 0.13 | 0.0910 | 0.2544 | 0.8466 |
No log | 3.0 | 21 | 3.9690 | 0.225 | 0.8600 | 6.8547 | 0.225 | 0.1401 | 0.2626 | 0.6398 |
No log | 4.0 | 28 | 3.8651 | 0.375 | 0.7978 | 5.6610 | 0.375 | 0.2964 | 0.3198 | 0.4692 |
No log | 5.0 | 35 | 3.8115 | 0.465 | 0.7222 | 3.4731 | 0.465 | 0.3435 | 0.3007 | 0.3464 |
No log | 6.0 | 42 | 3.7351 | 0.575 | 0.6691 | 2.6672 | 0.575 | 0.4736 | 0.3509 | 0.2284 |
No log | 7.0 | 49 | 3.6913 | 0.62 | 0.6152 | 2.6026 | 0.62 | 0.4700 | 0.3255 | 0.1827 |
No log | 8.0 | 56 | 3.6687 | 0.68 | 0.5820 | 1.9726 | 0.68 | 0.5400 | 0.3735 | 0.1472 |
No log | 9.0 | 63 | 3.6771 | 0.645 | 0.5464 | 1.9938 | 0.645 | 0.5211 | 0.3013 | 0.1595 |
No log | 10.0 | 70 | 3.6759 | 0.685 | 0.4884 | 1.9735 | 0.685 | 0.5678 | 0.2672 | 0.1278 |
No log | 11.0 | 77 | 3.6587 | 0.71 | 0.4696 | 2.0625 | 0.7100 | 0.6080 | 0.2956 | 0.1115 |
No log | 12.0 | 84 | 3.6317 | 0.72 | 0.4121 | 2.2088 | 0.72 | 0.6137 | 0.2372 | 0.0925 |
No log | 13.0 | 91 | 3.6799 | 0.745 | 0.4167 | 2.0639 | 0.745 | 0.6372 | 0.2480 | 0.0978 |
No log | 14.0 | 98 | 3.6191 | 0.745 | 0.3850 | 1.9955 | 0.745 | 0.6384 | 0.2363 | 0.0728 |
No log | 15.0 | 105 | 3.6813 | 0.715 | 0.3814 | 2.0731 | 0.715 | 0.6026 | 0.1995 | 0.0918 |
No log | 16.0 | 112 | 3.6394 | 0.75 | 0.3644 | 1.9093 | 0.75 | 0.6492 | 0.1904 | 0.0777 |
No log | 17.0 | 119 | 3.7661 | 0.735 | 0.3786 | 1.5402 | 0.735 | 0.6352 | 0.2032 | 0.0982 |
No log | 18.0 | 126 | 3.6849 | 0.79 | 0.3369 | 1.8761 | 0.79 | 0.6965 | 0.1954 | 0.0708 |
No log | 19.0 | 133 | 3.6776 | 0.775 | 0.3358 | 1.4981 | 0.775 | 0.7021 | 0.1919 | 0.0744 |
No log | 20.0 | 140 | 3.6814 | 0.755 | 0.3546 | 1.5225 | 0.755 | 0.6873 | 0.1840 | 0.0794 |
No log | 21.0 | 147 | 3.6948 | 0.775 | 0.3267 | 1.4776 | 0.775 | 0.7052 | 0.1630 | 0.0710 |
No log | 22.0 | 154 | 3.7210 | 0.795 | 0.3191 | 1.3634 | 0.795 | 0.7383 | 0.1737 | 0.0705 |
No log | 23.0 | 161 | 3.7231 | 0.805 | 0.3062 | 1.3141 | 0.805 | 0.7679 | 0.1629 | 0.0665 |
No log | 24.0 | 168 | 3.7322 | 0.815 | 0.2903 | 1.2030 | 0.815 | 0.7771 | 0.1789 | 0.0609 |
No log | 25.0 | 175 | 3.7237 | 0.815 | 0.3020 | 1.1721 | 0.815 | 0.7947 | 0.1759 | 0.0603 |
No log | 26.0 | 182 | 3.8243 | 0.8 | 0.3138 | 1.3356 | 0.8000 | 0.7699 | 0.1735 | 0.0720 |
No log | 27.0 | 189 | 3.7675 | 0.81 | 0.3038 | 1.2662 | 0.81 | 0.7853 | 0.1891 | 0.0699 |
No log | 28.0 | 196 | 3.8006 | 0.81 | 0.2992 | 1.3422 | 0.81 | 0.7805 | 0.1709 | 0.0698 |
No log | 29.0 | 203 | 3.7783 | 0.815 | 0.3009 | 1.3322 | 0.815 | 0.7959 | 0.1729 | 0.0669 |
No log | 30.0 | 210 | 3.7547 | 0.835 | 0.2775 | 0.9761 | 0.835 | 0.8228 | 0.1751 | 0.0566 |
No log | 31.0 | 217 | 3.7810 | 0.82 | 0.2905 | 1.1472 | 0.82 | 0.7953 | 0.1670 | 0.0631 |
No log | 32.0 | 224 | 3.7935 | 0.82 | 0.2732 | 1.2016 | 0.82 | 0.7967 | 0.1429 | 0.0590 |
No log | 33.0 | 231 | 3.7871 | 0.83 | 0.2774 | 1.2459 | 0.83 | 0.8134 | 0.1495 | 0.0562 |
No log | 34.0 | 238 | 3.7689 | 0.815 | 0.2756 | 1.1135 | 0.815 | 0.7825 | 0.1609 | 0.0596 |
No log | 35.0 | 245 | 3.8169 | 0.81 | 0.2801 | 1.2621 | 0.81 | 0.7880 | 0.1570 | 0.0624 |
No log | 36.0 | 252 | 3.7973 | 0.82 | 0.2729 | 1.1310 | 0.82 | 0.7894 | 0.1466 | 0.0585 |
No log | 37.0 | 259 | 3.8560 | 0.835 | 0.2825 | 1.3222 | 0.835 | 0.8114 | 0.1466 | 0.0606 |
No log | 38.0 | 266 | 3.8351 | 0.83 | 0.2892 | 1.2548 | 0.83 | 0.8178 | 0.1489 | 0.0593 |
No log | 39.0 | 273 | 3.8258 | 0.82 | 0.2711 | 1.1900 | 0.82 | 0.8037 | 0.1455 | 0.0589 |
No log | 40.0 | 280 | 3.8288 | 0.815 | 0.2840 | 1.2167 | 0.815 | 0.7913 | 0.1574 | 0.0619 |
No log | 41.0 | 287 | 3.8264 | 0.82 | 0.2790 | 1.1737 | 0.82 | 0.8020 | 0.1394 | 0.0609 |
No log | 42.0 | 294 | 3.8276 | 0.81 | 0.2797 | 1.1603 | 0.81 | 0.7888 | 0.1585 | 0.0580 |
No log | 43.0 | 301 | 3.8554 | 0.815 | 0.2771 | 1.1695 | 0.815 | 0.7943 | 0.1310 | 0.0594 |
No log | 44.0 | 308 | 3.8405 | 0.825 | 0.2768 | 1.1593 | 0.825 | 0.8149 | 0.1413 | 0.0569 |
No log | 45.0 | 315 | 3.8640 | 0.815 | 0.2891 | 1.1752 | 0.815 | 0.7980 | 0.1516 | 0.0590 |
No log | 46.0 | 322 | 3.8624 | 0.825 | 0.2653 | 1.1548 | 0.825 | 0.8024 | 0.1384 | 0.0581 |
No log | 47.0 | 329 | 3.8546 | 0.83 | 0.2766 | 1.1634 | 0.83 | 0.8106 | 0.1411 | 0.0594 |
No log | 48.0 | 336 | 3.8652 | 0.82 | 0.2805 | 1.1651 | 0.82 | 0.8069 | 0.1278 | 0.0581 |
No log | 49.0 | 343 | 3.8716 | 0.83 | 0.2758 | 1.1895 | 0.83 | 0.8065 | 0.1486 | 0.0590 |
No log | 50.0 | 350 | 3.8720 | 0.815 | 0.2737 | 1.1709 | 0.815 | 0.7937 | 0.1375 | 0.0578 |
No log | 51.0 | 357 | 3.8812 | 0.82 | 0.2762 | 1.2348 | 0.82 | 0.7993 | 0.1292 | 0.0600 |
No log | 52.0 | 364 | 3.8844 | 0.805 | 0.2815 | 1.0870 | 0.805 | 0.7843 | 0.1525 | 0.0581 |
No log | 53.0 | 371 | 3.8968 | 0.825 | 0.2704 | 1.2235 | 0.825 | 0.8011 | 0.1452 | 0.0582 |
No log | 54.0 | 378 | 3.8996 | 0.81 | 0.2788 | 1.3264 | 0.81 | 0.7909 | 0.1453 | 0.0573 |
No log | 55.0 | 385 | 3.9037 | 0.81 | 0.2757 | 1.2231 | 0.81 | 0.7928 | 0.1307 | 0.0574 |
No log | 56.0 | 392 | 3.9024 | 0.81 | 0.2775 | 1.2369 | 0.81 | 0.7869 | 0.1493 | 0.0581 |
No log | 57.0 | 399 | 3.8951 | 0.83 | 0.2722 | 1.2151 | 0.83 | 0.8171 | 0.1491 | 0.0556 |
No log | 58.0 | 406 | 3.9224 | 0.82 | 0.2741 | 1.2957 | 0.82 | 0.8001 | 0.1351 | 0.0575 |
No log | 59.0 | 413 | 3.9397 | 0.805 | 0.2782 | 1.3017 | 0.805 | 0.7870 | 0.1342 | 0.0584 |
No log | 60.0 | 420 | 3.9250 | 0.835 | 0.2721 | 1.2251 | 0.835 | 0.8151 | 0.1466 | 0.0570 |
No log | 61.0 | 427 | 3.9381 | 0.825 | 0.2753 | 1.2330 | 0.825 | 0.8044 | 0.1384 | 0.0577 |
No log | 62.0 | 434 | 3.9475 | 0.82 | 0.2759 | 1.2171 | 0.82 | 0.8054 | 0.1485 | 0.0576 |
No log | 63.0 | 441 | 3.9591 | 0.83 | 0.2761 | 1.2299 | 0.83 | 0.8122 | 0.1551 | 0.0568 |
No log | 64.0 | 448 | 3.9496 | 0.835 | 0.2709 | 1.2282 | 0.835 | 0.8223 | 0.1397 | 0.0559 |
No log | 65.0 | 455 | 3.9360 | 0.83 | 0.2688 | 1.2238 | 0.83 | 0.8171 | 0.1384 | 0.0535 |
No log | 66.0 | 462 | 3.9594 | 0.835 | 0.2733 | 1.2395 | 0.835 | 0.8094 | 0.1540 | 0.0563 |
No log | 67.0 | 469 | 3.9648 | 0.84 | 0.2700 | 1.2154 | 0.8400 | 0.8252 | 0.1673 | 0.0557 |
No log | 68.0 | 476 | 3.9725 | 0.83 | 0.2712 | 1.2297 | 0.83 | 0.8171 | 0.1248 | 0.0552 |
No log | 69.0 | 483 | 3.9844 | 0.835 | 0.2719 | 1.2243 | 0.835 | 0.8151 | 0.1605 | 0.0557 |
No log | 70.0 | 490 | 3.9845 | 0.83 | 0.2699 | 1.2288 | 0.83 | 0.8100 | 0.1223 | 0.0553 |
No log | 71.0 | 497 | 3.9986 | 0.835 | 0.2729 | 1.2206 | 0.835 | 0.8223 | 0.1381 | 0.0556 |
3.4116 | 72.0 | 504 | 3.9973 | 0.835 | 0.2727 | 1.2242 | 0.835 | 0.8223 | 0.1446 | 0.0553 |
3.4116 | 73.0 | 511 | 4.0092 | 0.835 | 0.2733 | 1.2226 | 0.835 | 0.8223 | 0.1482 | 0.0554 |
3.4116 | 74.0 | 518 | 4.0072 | 0.83 | 0.2714 | 1.2248 | 0.83 | 0.8152 | 0.1219 | 0.0549 |
3.4116 | 75.0 | 525 | 4.0168 | 0.835 | 0.2742 | 1.2200 | 0.835 | 0.8223 | 0.1329 | 0.0551 |
3.4116 | 76.0 | 532 | 4.0223 | 0.835 | 0.2737 | 1.2248 | 0.835 | 0.8213 | 0.1380 | 0.0552 |
3.4116 | 77.0 | 539 | 4.0250 | 0.84 | 0.2719 | 1.2208 | 0.8400 | 0.8252 | 0.1405 | 0.0551 |
3.4116 | 78.0 | 546 | 4.0338 | 0.835 | 0.2745 | 1.2242 | 0.835 | 0.8213 | 0.1536 | 0.0551 |
3.4116 | 79.0 | 553 | 4.0380 | 0.835 | 0.2740 | 1.2234 | 0.835 | 0.8213 | 0.1494 | 0.0552 |
3.4116 | 80.0 | 560 | 4.0445 | 0.835 | 0.2744 | 1.2223 | 0.835 | 0.8213 | 0.1500 | 0.0555 |
3.4116 | 81.0 | 567 | 4.0449 | 0.835 | 0.2735 | 1.2209 | 0.835 | 0.8213 | 0.1504 | 0.0552 |
3.4116 | 82.0 | 574 | 4.0515 | 0.835 | 0.2747 | 1.2228 | 0.835 | 0.8213 | 0.1526 | 0.0549 |
3.4116 | 83.0 | 581 | 4.0534 | 0.835 | 0.2743 | 1.2226 | 0.835 | 0.8213 | 0.1501 | 0.0548 |
3.4116 | 84.0 | 588 | 4.0572 | 0.835 | 0.2740 | 1.2225 | 0.835 | 0.8213 | 0.1447 | 0.0550 |
3.4116 | 85.0 | 595 | 4.0605 | 0.835 | 0.2743 | 1.2222 | 0.835 | 0.8213 | 0.1466 | 0.0548 |
3.4116 | 86.0 | 602 | 4.0621 | 0.835 | 0.2744 | 1.2215 | 0.835 | 0.8213 | 0.1427 | 0.0548 |
3.4116 | 87.0 | 609 | 4.0653 | 0.835 | 0.2745 | 1.2214 | 0.835 | 0.8213 | 0.1439 | 0.0549 |
3.4116 | 88.0 | 616 | 4.0673 | 0.835 | 0.2746 | 1.2217 | 0.835 | 0.8213 | 0.1410 | 0.0548 |
3.4116 | 89.0 | 623 | 4.0705 | 0.835 | 0.2748 | 1.2214 | 0.835 | 0.8213 | 0.1440 | 0.0549 |
3.4116 | 90.0 | 630 | 4.0717 | 0.835 | 0.2744 | 1.2217 | 0.835 | 0.8213 | 0.1426 | 0.0547 |
3.4116 | 91.0 | 637 | 4.0740 | 0.835 | 0.2747 | 1.2217 | 0.835 | 0.8213 | 0.1432 | 0.0548 |
3.4116 | 92.0 | 644 | 4.0753 | 0.835 | 0.2748 | 1.2217 | 0.835 | 0.8213 | 0.1442 | 0.0547 |
3.4116 | 93.0 | 651 | 4.0763 | 0.835 | 0.2746 | 1.2214 | 0.835 | 0.8213 | 0.1434 | 0.0546 |
3.4116 | 94.0 | 658 | 4.0777 | 0.835 | 0.2746 | 1.2213 | 0.835 | 0.8213 | 0.1433 | 0.0547 |
3.4116 | 95.0 | 665 | 4.0788 | 0.835 | 0.2747 | 1.2217 | 0.835 | 0.8213 | 0.1442 | 0.0547 |
3.4116 | 96.0 | 672 | 4.0800 | 0.835 | 0.2748 | 1.2217 | 0.835 | 0.8213 | 0.1466 | 0.0547 |
3.4116 | 97.0 | 679 | 4.0802 | 0.835 | 0.2747 | 1.2215 | 0.835 | 0.8213 | 0.1435 | 0.0547 |
3.4116 | 98.0 | 686 | 4.0808 | 0.835 | 0.2747 | 1.2214 | 0.835 | 0.8213 | 0.1435 | 0.0547 |
3.4116 | 99.0 | 693 | 4.0811 | 0.835 | 0.2748 | 1.2214 | 0.835 | 0.8213 | 0.1443 | 0.0547 |
3.4116 | 100.0 | 700 | 4.0812 | 0.835 | 0.2748 | 1.2215 | 0.835 | 0.8213 | 0.1443 | 0.0548 |
Framework versions
- Transformers 4.26.1
- Pytorch 1.13.1.post200
- Datasets 2.9.0
- Tokenizers 0.13.2