<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. -->
18-tiny_tobacco3482_hint_
This model is a fine-tuned version of WinKawaks/vit-tiny-patch16-224 on the None dataset. It achieves the following results on the evaluation set:
- Loss: 71.6043
- Accuracy: 0.85
- Brier Loss: 0.2638
- Nll: 1.3122
- F1 Micro: 0.85
- F1 Macro: 0.8425
- Ece: 0.1342
- Aurc: 0.0355
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 100
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | Brier Loss | Nll | F1 Micro | F1 Macro | Ece | Aurc |
---|---|---|---|---|---|---|---|---|---|---|
No log | 1.0 | 25 | 74.9320 | 0.26 | 0.8713 | 4.9021 | 0.26 | 0.1920 | 0.3072 | 0.7822 |
No log | 2.0 | 50 | 74.1171 | 0.54 | 0.5982 | 2.7516 | 0.54 | 0.4539 | 0.2763 | 0.2591 |
No log | 3.0 | 75 | 73.6525 | 0.685 | 0.4431 | 1.5999 | 0.685 | 0.6196 | 0.1890 | 0.1355 |
No log | 4.0 | 100 | 73.3675 | 0.735 | 0.3894 | 1.5393 | 0.735 | 0.7201 | 0.2334 | 0.1214 |
No log | 5.0 | 125 | 73.0199 | 0.785 | 0.3130 | 1.6799 | 0.785 | 0.7426 | 0.1738 | 0.0705 |
No log | 6.0 | 150 | 72.7837 | 0.8 | 0.3068 | 1.5290 | 0.8000 | 0.7711 | 0.1531 | 0.0582 |
No log | 7.0 | 175 | 72.7218 | 0.76 | 0.3913 | 1.8944 | 0.76 | 0.7334 | 0.1998 | 0.0987 |
No log | 8.0 | 200 | 72.7351 | 0.695 | 0.4805 | 1.4948 | 0.695 | 0.6565 | 0.2585 | 0.1329 |
No log | 9.0 | 225 | 72.2520 | 0.79 | 0.3279 | 1.5198 | 0.79 | 0.7440 | 0.1878 | 0.0704 |
No log | 10.0 | 250 | 72.3792 | 0.785 | 0.3370 | 1.7982 | 0.785 | 0.7687 | 0.1655 | 0.0757 |
No log | 11.0 | 275 | 72.2408 | 0.765 | 0.3542 | 1.6304 | 0.765 | 0.7364 | 0.1838 | 0.0660 |
No log | 12.0 | 300 | 72.1003 | 0.76 | 0.3664 | 1.4090 | 0.76 | 0.7247 | 0.1832 | 0.0817 |
No log | 13.0 | 325 | 72.4671 | 0.77 | 0.3886 | 1.7820 | 0.7700 | 0.7380 | 0.1985 | 0.0833 |
No log | 14.0 | 350 | 72.1519 | 0.785 | 0.3633 | 1.5939 | 0.785 | 0.7563 | 0.1814 | 0.0687 |
No log | 15.0 | 375 | 72.2206 | 0.775 | 0.3723 | 1.6025 | 0.775 | 0.7406 | 0.1824 | 0.0800 |
No log | 16.0 | 400 | 72.0554 | 0.805 | 0.3080 | 1.4448 | 0.805 | 0.7520 | 0.1577 | 0.0485 |
No log | 17.0 | 425 | 72.3130 | 0.8 | 0.3412 | 1.7255 | 0.8000 | 0.7653 | 0.1637 | 0.0694 |
No log | 18.0 | 450 | 72.1019 | 0.815 | 0.3228 | 1.4827 | 0.815 | 0.7918 | 0.1753 | 0.0592 |
No log | 19.0 | 475 | 72.2643 | 0.8 | 0.3558 | 1.5960 | 0.8000 | 0.7604 | 0.1677 | 0.0737 |
71.4928 | 20.0 | 500 | 71.9509 | 0.78 | 0.3398 | 1.5615 | 0.78 | 0.7596 | 0.1683 | 0.0561 |
71.4928 | 21.0 | 525 | 71.9389 | 0.82 | 0.2947 | 1.5336 | 0.82 | 0.8008 | 0.1561 | 0.0538 |
71.4928 | 22.0 | 550 | 72.0399 | 0.83 | 0.2843 | 1.4576 | 0.83 | 0.7914 | 0.1347 | 0.0523 |
71.4928 | 23.0 | 575 | 72.0529 | 0.815 | 0.3263 | 1.3174 | 0.815 | 0.7923 | 0.1677 | 0.0523 |
71.4928 | 24.0 | 600 | 72.3487 | 0.775 | 0.3838 | 1.5418 | 0.775 | 0.7560 | 0.1880 | 0.0794 |
71.4928 | 25.0 | 625 | 71.9154 | 0.825 | 0.2949 | 1.2538 | 0.825 | 0.7992 | 0.1471 | 0.0584 |
71.4928 | 26.0 | 650 | 72.0222 | 0.815 | 0.3151 | 1.5809 | 0.815 | 0.7830 | 0.1601 | 0.0594 |
71.4928 | 27.0 | 675 | 72.0422 | 0.815 | 0.3269 | 1.5161 | 0.815 | 0.7954 | 0.1606 | 0.0597 |
71.4928 | 28.0 | 700 | 72.0172 | 0.845 | 0.2828 | 1.3388 | 0.845 | 0.8350 | 0.1447 | 0.0649 |
71.4928 | 29.0 | 725 | 71.9113 | 0.84 | 0.2685 | 1.2082 | 0.8400 | 0.8202 | 0.1365 | 0.0562 |
71.4928 | 30.0 | 750 | 71.9516 | 0.84 | 0.2856 | 1.2664 | 0.8400 | 0.8359 | 0.1415 | 0.0563 |
71.4928 | 31.0 | 775 | 71.8583 | 0.835 | 0.2782 | 1.2979 | 0.835 | 0.8277 | 0.1447 | 0.0545 |
71.4928 | 32.0 | 800 | 71.9071 | 0.84 | 0.2766 | 1.2772 | 0.8400 | 0.8359 | 0.1378 | 0.0546 |
71.4928 | 33.0 | 825 | 71.8580 | 0.85 | 0.2699 | 1.2985 | 0.85 | 0.8482 | 0.1351 | 0.0525 |
71.4928 | 34.0 | 850 | 71.8499 | 0.835 | 0.2872 | 1.3022 | 0.835 | 0.8292 | 0.1462 | 0.0532 |
71.4928 | 35.0 | 875 | 72.0085 | 0.84 | 0.2897 | 1.3042 | 0.8400 | 0.8323 | 0.1420 | 0.0616 |
71.4928 | 36.0 | 900 | 71.8423 | 0.82 | 0.2929 | 1.2266 | 0.82 | 0.8056 | 0.1543 | 0.0521 |
71.4928 | 37.0 | 925 | 71.7886 | 0.845 | 0.2807 | 1.2181 | 0.845 | 0.8254 | 0.1332 | 0.0400 |
71.4928 | 38.0 | 950 | 71.8857 | 0.83 | 0.2877 | 1.4036 | 0.83 | 0.8166 | 0.1490 | 0.0480 |
71.4928 | 39.0 | 975 | 71.9388 | 0.83 | 0.2877 | 1.3374 | 0.83 | 0.8119 | 0.1459 | 0.0451 |
70.1673 | 40.0 | 1000 | 72.0368 | 0.8 | 0.3368 | 1.7112 | 0.8000 | 0.7897 | 0.1741 | 0.0578 |
70.1673 | 41.0 | 1025 | 72.0295 | 0.8 | 0.3208 | 1.5473 | 0.8000 | 0.7862 | 0.1587 | 0.0622 |
70.1673 | 42.0 | 1050 | 71.7048 | 0.86 | 0.2547 | 1.3240 | 0.8600 | 0.8374 | 0.1257 | 0.0408 |
70.1673 | 43.0 | 1075 | 71.7541 | 0.835 | 0.2680 | 1.4095 | 0.835 | 0.8178 | 0.1418 | 0.0445 |
70.1673 | 44.0 | 1100 | 71.7746 | 0.845 | 0.2721 | 1.5529 | 0.845 | 0.8383 | 0.1412 | 0.0405 |
70.1673 | 45.0 | 1125 | 71.7661 | 0.83 | 0.2908 | 1.5315 | 0.83 | 0.8104 | 0.1415 | 0.0437 |
70.1673 | 46.0 | 1150 | 71.7563 | 0.84 | 0.2787 | 1.4088 | 0.8400 | 0.8238 | 0.1360 | 0.0416 |
70.1673 | 47.0 | 1175 | 71.7670 | 0.84 | 0.2709 | 1.2801 | 0.8400 | 0.8303 | 0.1322 | 0.0401 |
70.1673 | 48.0 | 1200 | 71.7458 | 0.84 | 0.2699 | 1.4180 | 0.8400 | 0.8265 | 0.1433 | 0.0397 |
70.1673 | 49.0 | 1225 | 71.7226 | 0.84 | 0.2653 | 1.4126 | 0.8400 | 0.8265 | 0.1282 | 0.0390 |
70.1673 | 50.0 | 1250 | 71.7163 | 0.85 | 0.2608 | 1.4227 | 0.85 | 0.8402 | 0.1339 | 0.0394 |
70.1673 | 51.0 | 1275 | 71.7044 | 0.845 | 0.2612 | 1.4130 | 0.845 | 0.8371 | 0.1314 | 0.0387 |
70.1673 | 52.0 | 1300 | 71.6821 | 0.85 | 0.2545 | 1.4880 | 0.85 | 0.8392 | 0.1286 | 0.0383 |
70.1673 | 53.0 | 1325 | 71.6764 | 0.845 | 0.2598 | 1.3776 | 0.845 | 0.8301 | 0.1299 | 0.0377 |
70.1673 | 54.0 | 1350 | 71.6750 | 0.855 | 0.2590 | 1.3404 | 0.855 | 0.8479 | 0.1361 | 0.0383 |
70.1673 | 55.0 | 1375 | 71.7192 | 0.855 | 0.2543 | 1.4804 | 0.855 | 0.8482 | 0.1346 | 0.0388 |
70.1673 | 56.0 | 1400 | 71.6907 | 0.85 | 0.2552 | 1.4102 | 0.85 | 0.8389 | 0.1274 | 0.0377 |
70.1673 | 57.0 | 1425 | 71.6778 | 0.85 | 0.2572 | 1.4026 | 0.85 | 0.8392 | 0.1319 | 0.0389 |
70.1673 | 58.0 | 1450 | 71.6735 | 0.85 | 0.2559 | 1.4062 | 0.85 | 0.8394 | 0.1288 | 0.0386 |
70.1673 | 59.0 | 1475 | 71.6938 | 0.855 | 0.2549 | 1.4710 | 0.855 | 0.8482 | 0.1309 | 0.0387 |
69.9715 | 60.0 | 1500 | 71.6799 | 0.85 | 0.2599 | 1.3989 | 0.85 | 0.8389 | 0.1309 | 0.0384 |
69.9715 | 61.0 | 1525 | 71.6753 | 0.865 | 0.2539 | 1.3555 | 0.865 | 0.8619 | 0.1201 | 0.0374 |
69.9715 | 62.0 | 1550 | 71.6657 | 0.855 | 0.2562 | 1.4005 | 0.855 | 0.8453 | 0.1301 | 0.0365 |
69.9715 | 63.0 | 1575 | 71.6941 | 0.855 | 0.2569 | 1.4083 | 0.855 | 0.8453 | 0.1297 | 0.0369 |
69.9715 | 64.0 | 1600 | 71.6430 | 0.85 | 0.2567 | 1.3933 | 0.85 | 0.8395 | 0.1239 | 0.0370 |
69.9715 | 65.0 | 1625 | 71.6666 | 0.85 | 0.2582 | 1.4014 | 0.85 | 0.8395 | 0.1357 | 0.0375 |
69.9715 | 66.0 | 1650 | 71.6550 | 0.85 | 0.2578 | 1.3849 | 0.85 | 0.8395 | 0.1253 | 0.0370 |
69.9715 | 67.0 | 1675 | 71.6321 | 0.855 | 0.2573 | 1.3932 | 0.855 | 0.8466 | 0.1276 | 0.0362 |
69.9715 | 68.0 | 1700 | 71.6237 | 0.855 | 0.2576 | 1.3976 | 0.855 | 0.8453 | 0.1231 | 0.0374 |
69.9715 | 69.0 | 1725 | 71.6287 | 0.85 | 0.2589 | 1.3914 | 0.85 | 0.8403 | 0.1299 | 0.0366 |
69.9715 | 70.0 | 1750 | 71.6325 | 0.85 | 0.2580 | 1.3907 | 0.85 | 0.8425 | 0.1321 | 0.0365 |
69.9715 | 71.0 | 1775 | 71.6175 | 0.85 | 0.2572 | 1.3914 | 0.85 | 0.8412 | 0.1318 | 0.0365 |
69.9715 | 72.0 | 1800 | 71.6208 | 0.85 | 0.2591 | 1.3860 | 0.85 | 0.8425 | 0.1325 | 0.0355 |
69.9715 | 73.0 | 1825 | 71.6157 | 0.85 | 0.2600 | 1.3894 | 0.85 | 0.8425 | 0.1335 | 0.0361 |
69.9715 | 74.0 | 1850 | 71.6405 | 0.85 | 0.2632 | 1.3335 | 0.85 | 0.8425 | 0.1306 | 0.0359 |
69.9715 | 75.0 | 1875 | 71.6099 | 0.85 | 0.2586 | 1.3899 | 0.85 | 0.8425 | 0.1283 | 0.0360 |
69.9715 | 76.0 | 1900 | 71.6058 | 0.85 | 0.2599 | 1.3220 | 0.85 | 0.8425 | 0.1260 | 0.0357 |
69.9715 | 77.0 | 1925 | 71.6096 | 0.85 | 0.2591 | 1.3859 | 0.85 | 0.8425 | 0.1279 | 0.0355 |
69.9715 | 78.0 | 1950 | 71.6213 | 0.85 | 0.2604 | 1.3875 | 0.85 | 0.8425 | 0.1284 | 0.0351 |
69.9715 | 79.0 | 1975 | 71.6240 | 0.85 | 0.2610 | 1.3867 | 0.85 | 0.8425 | 0.1347 | 0.0356 |
69.8814 | 80.0 | 2000 | 71.6246 | 0.855 | 0.2608 | 1.3183 | 0.855 | 0.8483 | 0.1238 | 0.0354 |
69.8814 | 81.0 | 2025 | 71.6133 | 0.85 | 0.2595 | 1.3177 | 0.85 | 0.8425 | 0.1268 | 0.0357 |
69.8814 | 82.0 | 2050 | 71.6120 | 0.85 | 0.2593 | 1.3873 | 0.85 | 0.8425 | 0.1278 | 0.0353 |
69.8814 | 83.0 | 2075 | 71.6183 | 0.85 | 0.2600 | 1.3220 | 0.85 | 0.8425 | 0.1342 | 0.0356 |
69.8814 | 84.0 | 2100 | 71.6008 | 0.85 | 0.2610 | 1.3168 | 0.85 | 0.8425 | 0.1359 | 0.0358 |
69.8814 | 85.0 | 2125 | 71.5986 | 0.85 | 0.2621 | 1.3156 | 0.85 | 0.8425 | 0.1327 | 0.0355 |
69.8814 | 86.0 | 2150 | 71.6000 | 0.85 | 0.2609 | 1.3167 | 0.85 | 0.8425 | 0.1311 | 0.0354 |
69.8814 | 87.0 | 2175 | 71.6006 | 0.855 | 0.2611 | 1.3171 | 0.855 | 0.8483 | 0.1251 | 0.0353 |
69.8814 | 88.0 | 2200 | 71.6033 | 0.85 | 0.2620 | 1.3132 | 0.85 | 0.8425 | 0.1331 | 0.0357 |
69.8814 | 89.0 | 2225 | 71.6176 | 0.855 | 0.2635 | 1.3142 | 0.855 | 0.8483 | 0.1326 | 0.0357 |
69.8814 | 90.0 | 2250 | 71.6201 | 0.855 | 0.2636 | 1.3126 | 0.855 | 0.8483 | 0.1282 | 0.0356 |
69.8814 | 91.0 | 2275 | 71.6128 | 0.85 | 0.2629 | 1.3126 | 0.85 | 0.8425 | 0.1273 | 0.0356 |
69.8814 | 92.0 | 2300 | 71.6086 | 0.855 | 0.2631 | 1.3147 | 0.855 | 0.8515 | 0.1261 | 0.0358 |
69.8814 | 93.0 | 2325 | 71.6010 | 0.85 | 0.2638 | 1.3122 | 0.85 | 0.8425 | 0.1292 | 0.0356 |
69.8814 | 94.0 | 2350 | 71.6053 | 0.85 | 0.2636 | 1.3125 | 0.85 | 0.8425 | 0.1269 | 0.0354 |
69.8814 | 95.0 | 2375 | 71.6004 | 0.85 | 0.2640 | 1.3128 | 0.85 | 0.8425 | 0.1346 | 0.0356 |
69.8814 | 96.0 | 2400 | 71.6035 | 0.85 | 0.2644 | 1.3128 | 0.85 | 0.8425 | 0.1346 | 0.0356 |
69.8814 | 97.0 | 2425 | 71.6027 | 0.85 | 0.2639 | 1.3117 | 0.85 | 0.8425 | 0.1343 | 0.0355 |
69.8814 | 98.0 | 2450 | 71.6039 | 0.85 | 0.2639 | 1.3117 | 0.85 | 0.8425 | 0.1343 | 0.0354 |
69.8814 | 99.0 | 2475 | 71.6018 | 0.85 | 0.2640 | 1.3122 | 0.85 | 0.8425 | 0.1342 | 0.0356 |
69.8448 | 100.0 | 2500 | 71.6043 | 0.85 | 0.2638 | 1.3122 | 0.85 | 0.8425 | 0.1342 | 0.0355 |
Framework versions
- Transformers 4.26.1
- Pytorch 1.13.1.post200
- Datasets 2.9.0
- Tokenizers 0.13.2