<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. -->
300-tiny_tobacco3482_kd_CEKD_t2.5_a0.5
This model is a fine-tuned version of WinKawaks/vit-tiny-patch16-224 on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.4770
- Accuracy: 0.82
- Brier Loss: 0.2875
- Nll: 1.3922
- F1 Micro: 0.82
- F1 Macro: 0.8020
- Ece: 0.2219
- Aurc: 0.0517
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 100
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | Brier Loss | Nll | F1 Micro | F1 Macro | Ece | Aurc |
---|---|---|---|---|---|---|---|---|---|---|
No log | 1.0 | 13 | 1.7938 | 0.235 | 0.8938 | 7.8599 | 0.235 | 0.1394 | 0.3127 | 0.7433 |
No log | 2.0 | 26 | 1.2738 | 0.455 | 0.6913 | 3.6965 | 0.455 | 0.3679 | 0.2904 | 0.3352 |
No log | 3.0 | 39 | 1.0682 | 0.555 | 0.5748 | 2.0566 | 0.555 | 0.4968 | 0.2475 | 0.2296 |
No log | 4.0 | 52 | 0.8509 | 0.655 | 0.4621 | 1.7782 | 0.655 | 0.6085 | 0.2242 | 0.1405 |
No log | 5.0 | 65 | 0.7670 | 0.71 | 0.4142 | 1.4993 | 0.7100 | 0.6560 | 0.2271 | 0.1082 |
No log | 6.0 | 78 | 0.7285 | 0.735 | 0.3857 | 1.5730 | 0.735 | 0.6874 | 0.2098 | 0.0996 |
No log | 7.0 | 91 | 0.7052 | 0.72 | 0.3804 | 1.4916 | 0.72 | 0.6974 | 0.2249 | 0.0959 |
No log | 8.0 | 104 | 0.7590 | 0.71 | 0.3925 | 1.8047 | 0.7100 | 0.6641 | 0.1956 | 0.1008 |
No log | 9.0 | 117 | 0.7657 | 0.71 | 0.4006 | 1.8296 | 0.7100 | 0.7169 | 0.2330 | 0.1025 |
No log | 10.0 | 130 | 0.6512 | 0.755 | 0.3514 | 1.5899 | 0.755 | 0.7256 | 0.1863 | 0.0853 |
No log | 11.0 | 143 | 0.6615 | 0.775 | 0.3638 | 1.8180 | 0.775 | 0.7564 | 0.2106 | 0.0911 |
No log | 12.0 | 156 | 0.6195 | 0.785 | 0.3398 | 1.6998 | 0.785 | 0.7419 | 0.2337 | 0.0643 |
No log | 13.0 | 169 | 0.6065 | 0.78 | 0.3471 | 1.5917 | 0.78 | 0.7550 | 0.2280 | 0.0793 |
No log | 14.0 | 182 | 0.6314 | 0.75 | 0.3486 | 1.9235 | 0.75 | 0.7315 | 0.2105 | 0.0755 |
No log | 15.0 | 195 | 0.6426 | 0.745 | 0.3686 | 1.8633 | 0.745 | 0.7100 | 0.2099 | 0.0891 |
No log | 16.0 | 208 | 0.5849 | 0.765 | 0.3476 | 1.3466 | 0.765 | 0.7505 | 0.1978 | 0.0827 |
No log | 17.0 | 221 | 0.5604 | 0.79 | 0.3311 | 1.3948 | 0.79 | 0.7581 | 0.2258 | 0.0705 |
No log | 18.0 | 234 | 0.5504 | 0.78 | 0.3230 | 1.4757 | 0.78 | 0.7712 | 0.2104 | 0.0624 |
No log | 19.0 | 247 | 0.5586 | 0.785 | 0.3247 | 1.5297 | 0.785 | 0.7642 | 0.2159 | 0.0655 |
No log | 20.0 | 260 | 0.5879 | 0.78 | 0.3366 | 1.5348 | 0.78 | 0.7727 | 0.2162 | 0.0716 |
No log | 21.0 | 273 | 0.5558 | 0.805 | 0.3113 | 1.5720 | 0.805 | 0.7945 | 0.2161 | 0.0652 |
No log | 22.0 | 286 | 0.5439 | 0.795 | 0.3258 | 1.7373 | 0.795 | 0.7883 | 0.2307 | 0.0745 |
No log | 23.0 | 299 | 0.5155 | 0.795 | 0.3094 | 1.4183 | 0.795 | 0.7725 | 0.2221 | 0.0625 |
No log | 24.0 | 312 | 0.5039 | 0.81 | 0.2994 | 1.4458 | 0.81 | 0.7830 | 0.2114 | 0.0624 |
No log | 25.0 | 325 | 0.5142 | 0.81 | 0.3101 | 1.2798 | 0.81 | 0.7928 | 0.2205 | 0.0624 |
No log | 26.0 | 338 | 0.5007 | 0.8 | 0.3100 | 1.2390 | 0.8000 | 0.7730 | 0.2038 | 0.0645 |
No log | 27.0 | 351 | 0.4779 | 0.815 | 0.2865 | 1.3312 | 0.815 | 0.7863 | 0.2061 | 0.0518 |
No log | 28.0 | 364 | 0.4893 | 0.825 | 0.2927 | 1.3993 | 0.825 | 0.8009 | 0.2219 | 0.0555 |
No log | 29.0 | 377 | 0.4938 | 0.82 | 0.2996 | 1.4038 | 0.82 | 0.7888 | 0.2138 | 0.0586 |
No log | 30.0 | 390 | 0.4668 | 0.82 | 0.2795 | 1.3366 | 0.82 | 0.7944 | 0.2217 | 0.0495 |
No log | 31.0 | 403 | 0.4662 | 0.8 | 0.2805 | 1.1721 | 0.8000 | 0.7761 | 0.2009 | 0.0494 |
No log | 32.0 | 416 | 0.4787 | 0.82 | 0.2887 | 1.3872 | 0.82 | 0.8043 | 0.2161 | 0.0542 |
No log | 33.0 | 429 | 0.4842 | 0.81 | 0.2909 | 1.4774 | 0.81 | 0.7854 | 0.2246 | 0.0562 |
No log | 34.0 | 442 | 0.4899 | 0.81 | 0.2979 | 1.4419 | 0.81 | 0.7843 | 0.2155 | 0.0607 |
No log | 35.0 | 455 | 0.4832 | 0.815 | 0.2920 | 1.3892 | 0.815 | 0.7907 | 0.2296 | 0.0552 |
No log | 36.0 | 468 | 0.4739 | 0.815 | 0.2869 | 1.2603 | 0.815 | 0.7932 | 0.2385 | 0.0532 |
No log | 37.0 | 481 | 0.4747 | 0.81 | 0.2877 | 1.4390 | 0.81 | 0.7848 | 0.2163 | 0.0526 |
No log | 38.0 | 494 | 0.4710 | 0.815 | 0.2842 | 1.3024 | 0.815 | 0.7885 | 0.2153 | 0.0516 |
0.2992 | 39.0 | 507 | 0.4712 | 0.81 | 0.2839 | 1.3676 | 0.81 | 0.7860 | 0.2282 | 0.0518 |
0.2992 | 40.0 | 520 | 0.4772 | 0.815 | 0.2883 | 1.3845 | 0.815 | 0.7953 | 0.2216 | 0.0527 |
0.2992 | 41.0 | 533 | 0.4751 | 0.82 | 0.2877 | 1.3207 | 0.82 | 0.8018 | 0.2177 | 0.0521 |
0.2992 | 42.0 | 546 | 0.4724 | 0.82 | 0.2860 | 1.3075 | 0.82 | 0.8018 | 0.2183 | 0.0508 |
0.2992 | 43.0 | 559 | 0.4745 | 0.82 | 0.2869 | 1.3079 | 0.82 | 0.8020 | 0.2184 | 0.0522 |
0.2992 | 44.0 | 572 | 0.4779 | 0.815 | 0.2884 | 1.4039 | 0.815 | 0.7922 | 0.2142 | 0.0531 |
0.2992 | 45.0 | 585 | 0.4738 | 0.82 | 0.2859 | 1.3153 | 0.82 | 0.8018 | 0.2079 | 0.0516 |
0.2992 | 46.0 | 598 | 0.4755 | 0.815 | 0.2874 | 1.3273 | 0.815 | 0.7922 | 0.2279 | 0.0526 |
0.2992 | 47.0 | 611 | 0.4736 | 0.82 | 0.2858 | 1.3190 | 0.82 | 0.8018 | 0.2182 | 0.0515 |
0.2992 | 48.0 | 624 | 0.4753 | 0.82 | 0.2876 | 1.3170 | 0.82 | 0.8018 | 0.2274 | 0.0521 |
0.2992 | 49.0 | 637 | 0.4755 | 0.82 | 0.2866 | 1.4452 | 0.82 | 0.8018 | 0.2245 | 0.0516 |
0.2992 | 50.0 | 650 | 0.4754 | 0.815 | 0.2869 | 1.2915 | 0.815 | 0.7924 | 0.2336 | 0.0523 |
0.2992 | 51.0 | 663 | 0.4747 | 0.82 | 0.2861 | 1.3336 | 0.82 | 0.8020 | 0.2309 | 0.0517 |
0.2992 | 52.0 | 676 | 0.4765 | 0.815 | 0.2880 | 1.3456 | 0.815 | 0.7924 | 0.2137 | 0.0524 |
0.2992 | 53.0 | 689 | 0.4756 | 0.82 | 0.2866 | 1.3288 | 0.82 | 0.8020 | 0.2236 | 0.0518 |
0.2992 | 54.0 | 702 | 0.4757 | 0.82 | 0.2873 | 1.3860 | 0.82 | 0.8018 | 0.2085 | 0.0516 |
0.2992 | 55.0 | 715 | 0.4753 | 0.815 | 0.2866 | 1.3284 | 0.815 | 0.7922 | 0.2100 | 0.0515 |
0.2992 | 56.0 | 728 | 0.4759 | 0.82 | 0.2870 | 1.3199 | 0.82 | 0.8020 | 0.2240 | 0.0518 |
0.2992 | 57.0 | 741 | 0.4764 | 0.82 | 0.2874 | 1.3901 | 0.82 | 0.8020 | 0.2241 | 0.0517 |
0.2992 | 58.0 | 754 | 0.4754 | 0.815 | 0.2870 | 1.3246 | 0.815 | 0.7924 | 0.2260 | 0.0520 |
0.2992 | 59.0 | 767 | 0.4759 | 0.815 | 0.2870 | 1.3862 | 0.815 | 0.7924 | 0.2176 | 0.0520 |
0.2992 | 60.0 | 780 | 0.4765 | 0.815 | 0.2874 | 1.3873 | 0.815 | 0.7924 | 0.2266 | 0.0523 |
0.2992 | 61.0 | 793 | 0.4763 | 0.82 | 0.2873 | 1.3851 | 0.82 | 0.8020 | 0.2161 | 0.0517 |
0.2992 | 62.0 | 806 | 0.4768 | 0.815 | 0.2878 | 1.3903 | 0.815 | 0.7924 | 0.2128 | 0.0522 |
0.2992 | 63.0 | 819 | 0.4767 | 0.82 | 0.2876 | 1.3866 | 0.82 | 0.8020 | 0.2120 | 0.0521 |
0.2992 | 64.0 | 832 | 0.4762 | 0.82 | 0.2872 | 1.3910 | 0.82 | 0.8020 | 0.2157 | 0.0516 |
0.2992 | 65.0 | 845 | 0.4765 | 0.82 | 0.2874 | 1.3892 | 0.82 | 0.8020 | 0.2178 | 0.0519 |
0.2992 | 66.0 | 858 | 0.4767 | 0.82 | 0.2875 | 1.3462 | 0.82 | 0.8020 | 0.2180 | 0.0519 |
0.2992 | 67.0 | 871 | 0.4764 | 0.82 | 0.2872 | 1.3894 | 0.82 | 0.8020 | 0.2252 | 0.0518 |
0.2992 | 68.0 | 884 | 0.4767 | 0.82 | 0.2874 | 1.3860 | 0.82 | 0.8020 | 0.2118 | 0.0518 |
0.2992 | 69.0 | 897 | 0.4766 | 0.82 | 0.2874 | 1.3894 | 0.82 | 0.8020 | 0.2180 | 0.0519 |
0.2992 | 70.0 | 910 | 0.4765 | 0.82 | 0.2872 | 1.3882 | 0.82 | 0.8020 | 0.2280 | 0.0517 |
0.2992 | 71.0 | 923 | 0.4766 | 0.82 | 0.2874 | 1.3875 | 0.82 | 0.8020 | 0.2177 | 0.0519 |
0.2992 | 72.0 | 936 | 0.4765 | 0.82 | 0.2874 | 1.3880 | 0.82 | 0.8020 | 0.2148 | 0.0517 |
0.2992 | 73.0 | 949 | 0.4766 | 0.82 | 0.2873 | 1.3915 | 0.82 | 0.8020 | 0.2109 | 0.0516 |
0.2992 | 74.0 | 962 | 0.4765 | 0.82 | 0.2872 | 1.3900 | 0.82 | 0.8020 | 0.2110 | 0.0517 |
0.2992 | 75.0 | 975 | 0.4769 | 0.82 | 0.2875 | 1.3913 | 0.82 | 0.8020 | 0.2251 | 0.0520 |
0.2992 | 76.0 | 988 | 0.4770 | 0.82 | 0.2876 | 1.3909 | 0.82 | 0.8020 | 0.2196 | 0.0520 |
0.0695 | 77.0 | 1001 | 0.4768 | 0.82 | 0.2875 | 1.3890 | 0.82 | 0.8020 | 0.2212 | 0.0517 |
0.0695 | 78.0 | 1014 | 0.4767 | 0.82 | 0.2873 | 1.3935 | 0.82 | 0.8020 | 0.2281 | 0.0518 |
0.0695 | 79.0 | 1027 | 0.4767 | 0.82 | 0.2874 | 1.3897 | 0.82 | 0.8020 | 0.2282 | 0.0517 |
0.0695 | 80.0 | 1040 | 0.4770 | 0.82 | 0.2876 | 1.3889 | 0.82 | 0.8020 | 0.2174 | 0.0518 |
0.0695 | 81.0 | 1053 | 0.4770 | 0.82 | 0.2875 | 1.3935 | 0.82 | 0.8020 | 0.2221 | 0.0518 |
0.0695 | 82.0 | 1066 | 0.4766 | 0.82 | 0.2873 | 1.3901 | 0.82 | 0.8020 | 0.2283 | 0.0517 |
0.0695 | 83.0 | 1079 | 0.4768 | 0.82 | 0.2874 | 1.3902 | 0.82 | 0.8020 | 0.2283 | 0.0517 |
0.0695 | 84.0 | 1092 | 0.4770 | 0.82 | 0.2874 | 1.3917 | 0.82 | 0.8020 | 0.2217 | 0.0518 |
0.0695 | 85.0 | 1105 | 0.4769 | 0.82 | 0.2875 | 1.3913 | 0.82 | 0.8020 | 0.2283 | 0.0518 |
0.0695 | 86.0 | 1118 | 0.4769 | 0.82 | 0.2874 | 1.3916 | 0.82 | 0.8020 | 0.2282 | 0.0517 |
0.0695 | 87.0 | 1131 | 0.4769 | 0.82 | 0.2874 | 1.3912 | 0.82 | 0.8020 | 0.2218 | 0.0517 |
0.0695 | 88.0 | 1144 | 0.4770 | 0.82 | 0.2875 | 1.3923 | 0.82 | 0.8020 | 0.2218 | 0.0517 |
0.0695 | 89.0 | 1157 | 0.4768 | 0.82 | 0.2874 | 1.3905 | 0.82 | 0.8020 | 0.2283 | 0.0518 |
0.0695 | 90.0 | 1170 | 0.4769 | 0.82 | 0.2875 | 1.3924 | 0.82 | 0.8020 | 0.2219 | 0.0517 |
0.0695 | 91.0 | 1183 | 0.4769 | 0.82 | 0.2874 | 1.3923 | 0.82 | 0.8020 | 0.2219 | 0.0517 |
0.0695 | 92.0 | 1196 | 0.4768 | 0.82 | 0.2874 | 1.3908 | 0.82 | 0.8020 | 0.2219 | 0.0517 |
0.0695 | 93.0 | 1209 | 0.4770 | 0.82 | 0.2875 | 1.3909 | 0.82 | 0.8020 | 0.2219 | 0.0518 |
0.0695 | 94.0 | 1222 | 0.4768 | 0.82 | 0.2873 | 1.3918 | 0.82 | 0.8020 | 0.2219 | 0.0517 |
0.0695 | 95.0 | 1235 | 0.4769 | 0.82 | 0.2874 | 1.3914 | 0.82 | 0.8020 | 0.2219 | 0.0517 |
0.0695 | 96.0 | 1248 | 0.4770 | 0.82 | 0.2875 | 1.3917 | 0.82 | 0.8020 | 0.2219 | 0.0517 |
0.0695 | 97.0 | 1261 | 0.4769 | 0.82 | 0.2874 | 1.3918 | 0.82 | 0.8020 | 0.2219 | 0.0517 |
0.0695 | 98.0 | 1274 | 0.4770 | 0.82 | 0.2875 | 1.3920 | 0.82 | 0.8020 | 0.2219 | 0.0517 |
0.0695 | 99.0 | 1287 | 0.4770 | 0.82 | 0.2875 | 1.3922 | 0.82 | 0.8020 | 0.2219 | 0.0517 |
0.0695 | 100.0 | 1300 | 0.4770 | 0.82 | 0.2875 | 1.3922 | 0.82 | 0.8020 | 0.2219 | 0.0517 |
Framework versions
- Transformers 4.26.1
- Pytorch 1.13.1.post200
- Datasets 2.9.0
- Tokenizers 0.13.2