This model is trained on xlm-roberta-base - https://huggingface.co/xlm-roberta-base
Dataset - https://drive.google.com/file/d/1hyXTTubD9CRjL1MBSIU_iVxFCdtGXqgB/view?usp=sharing
Notebook - https://colab.research.google.com/drive/1zHrs3hosTXBPiy0P1O-x6Z2EQ9RZGUsQ?usp=sharing
Label | Precision | Recall | F1-Score | Support |
---|---|---|---|---|
commodity | 0.17 | 0.14 | 0.15 | 81 |
company | 0.59 | 0.74 | 0.66 | 184 |
delivery_cap | 0.00 | 0.00 | 0.00 | 11 |
delivery_location | 0.00 | 0.00 | 0.00 | 34 |
delivery_port | 0.54 | 0.83 | 0.65 | 488 |
delivery_state | 0.60 | 0.04 | 0.08 | 73 |
incoterms | 0.86 | 0.76 | 0.81 | 194 |
measures | 0.88 | 0.91 | 0.90 | 686 |
package_type | 0.78 | 0.93 | 0.85 | 316 |
pickup_cap | 0.81 | 0.97 | 0.88 | 137 |
pickup_location | 0.61 | 0.67 | 0.63 | 407 |
pickup_port | 0.00 | 0.00 | 0.00 | 4 |
pickup_state | 0.70 | 0.91 | 0.79 | 107 |
quantity | 0.87 | 0.89 | 0.88 | 198 |
stackable | 0.57 | 0.43 | 0.49 | 56 |
volume | 0.53 | 0.11 | 0.18 | 84 |
weight | 0.50 | 0.72 | 0.59 | 279 |
micro avg | 0.68 | 0.76 | 0.72 | 3339 |
macro avg | 0.53 | 0.53 | 0.50 | 3339 |
weighted avg | 0.68 | 0.76 | 0.70 | 3339 |