LunarLander-v2 deep-reinforcement-learning reinforcement-learning stable-baselines3

** ** Agent playing LunarLander-v2

This is a trained model of a ** ** agent playing LunarLander-v2 using the stable-baselines3 library.

Usage (with Stable-baselines3)

TODO: Add your code

from stable_baselines3 import ...
from huggingface_sb3 import load_from_hub

model_name = "ppo-LunarLander-v2-Muddassir"
model.save(model_name)

eval_env = Monitor(gym.make("LunarLander-v2"))


mean_reward, std_reward = evaluate_policy(model, eval_env, n_eval_episodes=10, deterministic=True)

print(f"mean_reward={mean_reward:.2f} +/- {std_reward}")

eval_env = Monitor(gym.make("LunarLander-v2"))
mean_reward, std_reward = evaluate_policy(model, eval_env, n_eval_episodes=10, deterministic=True)
print(f"mean_reward={mean_reward:.2f} +/- {std_reward}")


...