<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. -->
distilhubert-finetuned-gtzan
This model is a fine-tuned version of ntu-spml/distilhubert on the GTZAN dataset. It achieves the following results on the evaluation set:
- Loss: 0.5786
- Accuracy: 0.83
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 10
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
1.9933 | 1.0 | 113 | 1.8547 | 0.55 |
1.2871 | 2.0 | 226 | 1.2257 | 0.65 |
0.9868 | 3.0 | 339 | 0.9143 | 0.73 |
0.9468 | 4.0 | 452 | 0.7964 | 0.76 |
0.6634 | 5.0 | 565 | 0.6592 | 0.82 |
0.3877 | 6.0 | 678 | 0.6870 | 0.77 |
0.426 | 7.0 | 791 | 0.5259 | 0.85 |
0.1165 | 8.0 | 904 | 0.5274 | 0.86 |
0.2397 | 9.0 | 1017 | 0.5487 | 0.84 |
0.1039 | 10.0 | 1130 | 0.5786 | 0.83 |
Framework versions
- Transformers 4.31.0
- Pytorch 2.0.1+cu118
- Datasets 2.14.0
- Tokenizers 0.13.3