<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. -->
dit-base-finetuned-rvlcdip-tiny_rvl_cdip-NK1000_kd
This model is a fine-tuned version of WinKawaks/vit-tiny-patch16-224 on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.5815
- Accuracy: 0.8055
- Brier Loss: 0.2836
- Nll: 1.6135
- F1 Micro: 0.8055
- F1 Macro: 0.8061
- Ece: 0.0597
- Aurc: 0.0526
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 128
- eval_batch_size: 128
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 50
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | Brier Loss | Nll | F1 Micro | F1 Macro | Ece | Aurc |
---|---|---|---|---|---|---|---|---|---|---|
No log | 1.0 | 125 | 1.2844 | 0.5403 | 0.5889 | 3.0582 | 0.5403 | 0.5275 | 0.0742 | 0.2209 |
No log | 2.0 | 250 | 0.9687 | 0.655 | 0.4587 | 2.4358 | 0.655 | 0.6414 | 0.0559 | 0.1296 |
No log | 3.0 | 375 | 0.8401 | 0.7063 | 0.4019 | 2.2308 | 0.7063 | 0.7008 | 0.0588 | 0.0990 |
1.234 | 4.0 | 500 | 0.8080 | 0.7145 | 0.3874 | 2.1628 | 0.7145 | 0.7163 | 0.0487 | 0.0951 |
1.234 | 5.0 | 625 | 0.7772 | 0.7238 | 0.3755 | 2.0380 | 0.7237 | 0.7167 | 0.0421 | 0.0914 |
1.234 | 6.0 | 750 | 0.7530 | 0.7498 | 0.3484 | 2.1346 | 0.7498 | 0.7464 | 0.0477 | 0.0774 |
1.234 | 7.0 | 875 | 0.7034 | 0.7652 | 0.3267 | 2.0596 | 0.7652 | 0.7664 | 0.0467 | 0.0678 |
0.3976 | 8.0 | 1000 | 0.7390 | 0.7715 | 0.3350 | 2.0568 | 0.7715 | 0.7704 | 0.0448 | 0.0763 |
0.3976 | 9.0 | 1125 | 0.7019 | 0.7762 | 0.3209 | 2.0168 | 0.7762 | 0.7768 | 0.0556 | 0.0769 |
0.3976 | 10.0 | 1250 | 0.7318 | 0.7668 | 0.3346 | 2.1148 | 0.7668 | 0.7699 | 0.0529 | 0.0792 |
0.3976 | 11.0 | 1375 | 0.7083 | 0.7782 | 0.3213 | 2.0671 | 0.7782 | 0.7775 | 0.0452 | 0.0756 |
0.1591 | 12.0 | 1500 | 0.7535 | 0.7668 | 0.3424 | 2.1407 | 0.7668 | 0.7636 | 0.0564 | 0.0845 |
0.1591 | 13.0 | 1625 | 0.7117 | 0.775 | 0.3288 | 2.0935 | 0.775 | 0.7766 | 0.0525 | 0.0785 |
0.1591 | 14.0 | 1750 | 0.6421 | 0.785 | 0.3039 | 1.9939 | 0.785 | 0.7860 | 0.0512 | 0.0643 |
0.1591 | 15.0 | 1875 | 0.6475 | 0.7865 | 0.3050 | 1.9301 | 0.7865 | 0.7867 | 0.0552 | 0.0636 |
0.1125 | 16.0 | 2000 | 0.6477 | 0.7893 | 0.3064 | 1.9442 | 0.7893 | 0.7920 | 0.0556 | 0.0684 |
0.1125 | 17.0 | 2125 | 0.6509 | 0.7883 | 0.3113 | 1.8957 | 0.7883 | 0.7907 | 0.0498 | 0.0710 |
0.1125 | 18.0 | 2250 | 0.6291 | 0.7925 | 0.3038 | 1.8697 | 0.7925 | 0.7963 | 0.0512 | 0.0677 |
0.1125 | 19.0 | 2375 | 0.6279 | 0.7963 | 0.2992 | 1.8155 | 0.7963 | 0.7950 | 0.0478 | 0.0647 |
0.095 | 20.0 | 2500 | 0.6246 | 0.7937 | 0.3008 | 1.7925 | 0.7937 | 0.7946 | 0.0595 | 0.0659 |
0.095 | 21.0 | 2625 | 0.6149 | 0.7953 | 0.2962 | 1.8237 | 0.7953 | 0.7951 | 0.0547 | 0.0590 |
0.095 | 22.0 | 2750 | 0.6196 | 0.7953 | 0.3000 | 1.8031 | 0.7953 | 0.7969 | 0.0567 | 0.0643 |
0.095 | 23.0 | 2875 | 0.6023 | 0.798 | 0.2932 | 1.7663 | 0.798 | 0.7983 | 0.0497 | 0.0616 |
0.0829 | 24.0 | 3000 | 0.6107 | 0.7943 | 0.2951 | 1.7755 | 0.7943 | 0.7958 | 0.0564 | 0.0581 |
0.0829 | 25.0 | 3125 | 0.5986 | 0.8015 | 0.2930 | 1.7243 | 0.8015 | 0.8027 | 0.0565 | 0.0574 |
0.0829 | 26.0 | 3250 | 0.5899 | 0.8005 | 0.2886 | 1.7304 | 0.8005 | 0.8021 | 0.0546 | 0.0560 |
0.0829 | 27.0 | 3375 | 0.5836 | 0.8023 | 0.2846 | 1.6865 | 0.8023 | 0.8024 | 0.0479 | 0.0561 |
0.074 | 28.0 | 3500 | 0.5824 | 0.8047 | 0.2850 | 1.6817 | 0.8047 | 0.8060 | 0.0524 | 0.0559 |
0.074 | 29.0 | 3625 | 0.5760 | 0.8063 | 0.2822 | 1.6505 | 0.8062 | 0.8065 | 0.0500 | 0.0546 |
0.074 | 30.0 | 3750 | 0.5819 | 0.8065 | 0.2843 | 1.6667 | 0.8065 | 0.8079 | 0.0563 | 0.0544 |
0.074 | 31.0 | 3875 | 0.5800 | 0.8045 | 0.2841 | 1.6658 | 0.8045 | 0.8059 | 0.0511 | 0.0548 |
0.0668 | 32.0 | 4000 | 0.5828 | 0.8053 | 0.2841 | 1.6883 | 0.8053 | 0.8054 | 0.0559 | 0.0547 |
0.0668 | 33.0 | 4125 | 0.5802 | 0.8037 | 0.2838 | 1.6669 | 0.8037 | 0.8038 | 0.0572 | 0.0545 |
0.0668 | 34.0 | 4250 | 0.5772 | 0.8067 | 0.2821 | 1.6588 | 0.8067 | 0.8083 | 0.0520 | 0.0525 |
0.0668 | 35.0 | 4375 | 0.5745 | 0.807 | 0.2812 | 1.6524 | 0.807 | 0.8072 | 0.0528 | 0.0528 |
0.0631 | 36.0 | 4500 | 0.5770 | 0.8063 | 0.2826 | 1.6433 | 0.8062 | 0.8071 | 0.0559 | 0.0528 |
0.0631 | 37.0 | 4625 | 0.5782 | 0.8007 | 0.2837 | 1.5953 | 0.8007 | 0.8021 | 0.0581 | 0.0541 |
0.0631 | 38.0 | 4750 | 0.5780 | 0.8047 | 0.2829 | 1.6275 | 0.8047 | 0.8052 | 0.0540 | 0.0521 |
0.0631 | 39.0 | 4875 | 0.5759 | 0.8055 | 0.2817 | 1.6162 | 0.8055 | 0.8065 | 0.0528 | 0.0529 |
0.0612 | 40.0 | 5000 | 0.5770 | 0.8047 | 0.2825 | 1.6131 | 0.8047 | 0.8051 | 0.0575 | 0.0524 |
0.0612 | 41.0 | 5125 | 0.5771 | 0.8043 | 0.2819 | 1.6015 | 0.8043 | 0.8048 | 0.0562 | 0.0519 |
0.0612 | 42.0 | 5250 | 0.5776 | 0.8043 | 0.2825 | 1.6152 | 0.8043 | 0.8047 | 0.0566 | 0.0527 |
0.0612 | 43.0 | 5375 | 0.5793 | 0.8057 | 0.2830 | 1.6196 | 0.8057 | 0.8065 | 0.0538 | 0.0527 |
0.06 | 44.0 | 5500 | 0.5801 | 0.8053 | 0.2835 | 1.6183 | 0.8053 | 0.8060 | 0.0618 | 0.0527 |
0.06 | 45.0 | 5625 | 0.5800 | 0.805 | 0.2831 | 1.6057 | 0.805 | 0.8055 | 0.0568 | 0.0530 |
0.06 | 46.0 | 5750 | 0.5812 | 0.805 | 0.2836 | 1.6034 | 0.805 | 0.8056 | 0.0577 | 0.0529 |
0.06 | 47.0 | 5875 | 0.5809 | 0.805 | 0.2834 | 1.6164 | 0.805 | 0.8056 | 0.0580 | 0.0526 |
0.0593 | 48.0 | 6000 | 0.5810 | 0.8057 | 0.2834 | 1.6108 | 0.8057 | 0.8064 | 0.0617 | 0.0525 |
0.0593 | 49.0 | 6125 | 0.5812 | 0.8053 | 0.2836 | 1.6140 | 0.8053 | 0.8058 | 0.0570 | 0.0527 |
0.0593 | 50.0 | 6250 | 0.5815 | 0.8055 | 0.2836 | 1.6135 | 0.8055 | 0.8061 | 0.0597 | 0.0526 |
Framework versions
- Transformers 4.26.1
- Pytorch 1.13.1.post200
- Datasets 2.9.0
- Tokenizers 0.13.2