<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. -->
dit-base-finetuned-rvlcdip-tiny_rvl_cdip-NK1000_hint
This model is a fine-tuned version of WinKawaks/vit-tiny-patch16-224 on the None dataset. It achieves the following results on the evaluation set:
- Loss: 2.7080
- Accuracy: 0.8275
- Brier Loss: 0.3142
- Nll: 2.0399
- F1 Micro: 0.8275
- F1 Macro: 0.8270
- Ece: 0.1526
- Aurc: 0.0520
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 50
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | Brier Loss | Nll | F1 Micro | F1 Macro | Ece | Aurc |
---|---|---|---|---|---|---|---|---|---|---|
3.111 | 1.0 | 1000 | 2.9416 | 0.5917 | 0.5262 | 2.5737 | 0.5917 | 0.5835 | 0.0528 | 0.1821 |
2.5832 | 2.0 | 2000 | 2.4518 | 0.6917 | 0.4147 | 2.1569 | 0.6917 | 0.6919 | 0.0508 | 0.1107 |
2.2618 | 3.0 | 3000 | 2.2194 | 0.7418 | 0.3548 | 2.0905 | 0.7418 | 0.7417 | 0.0384 | 0.0775 |
2.0277 | 4.0 | 4000 | 2.1469 | 0.7575 | 0.3418 | 2.0638 | 0.7575 | 0.7547 | 0.0661 | 0.0729 |
1.9024 | 5.0 | 5000 | 2.1380 | 0.7355 | 0.3703 | 2.0583 | 0.7355 | 0.7365 | 0.0619 | 0.0880 |
1.7315 | 6.0 | 6000 | 2.0423 | 0.7508 | 0.3495 | 2.0467 | 0.7508 | 0.7566 | 0.0631 | 0.0752 |
1.5844 | 7.0 | 7000 | 2.0832 | 0.7628 | 0.3382 | 2.1301 | 0.7628 | 0.7651 | 0.0953 | 0.0689 |
1.4761 | 8.0 | 8000 | 2.2224 | 0.773 | 0.3548 | 2.1347 | 0.7730 | 0.7734 | 0.1284 | 0.0708 |
1.3852 | 9.0 | 9000 | 2.2341 | 0.7853 | 0.3452 | 2.0905 | 0.7853 | 0.7874 | 0.1349 | 0.0614 |
1.3234 | 10.0 | 10000 | 2.3403 | 0.778 | 0.3614 | 2.1125 | 0.778 | 0.7797 | 0.1530 | 0.0649 |
1.2546 | 11.0 | 11000 | 2.4153 | 0.7768 | 0.3675 | 2.1438 | 0.7768 | 0.7772 | 0.1601 | 0.0649 |
1.2161 | 12.0 | 12000 | 2.5661 | 0.7742 | 0.3810 | 2.1581 | 0.7742 | 0.7752 | 0.1715 | 0.0669 |
1.1611 | 13.0 | 13000 | 2.5638 | 0.789 | 0.3616 | 2.0957 | 0.7890 | 0.7888 | 0.1648 | 0.0595 |
1.1349 | 14.0 | 14000 | 2.6037 | 0.7957 | 0.3569 | 2.1299 | 0.7957 | 0.7963 | 0.1641 | 0.0578 |
1.1043 | 15.0 | 15000 | 2.6763 | 0.7817 | 0.3786 | 2.1078 | 0.7817 | 0.7855 | 0.1755 | 0.0680 |
1.0768 | 16.0 | 16000 | 2.6931 | 0.792 | 0.3636 | 2.1056 | 0.792 | 0.7942 | 0.1679 | 0.0601 |
1.0675 | 17.0 | 17000 | 2.6384 | 0.7957 | 0.3549 | 2.1658 | 0.7957 | 0.7941 | 0.1651 | 0.0570 |
1.0387 | 18.0 | 18000 | 2.8320 | 0.7825 | 0.3899 | 2.1964 | 0.7825 | 0.7804 | 0.1804 | 0.0706 |
1.035 | 19.0 | 19000 | 2.7127 | 0.7947 | 0.3641 | 2.0771 | 0.7947 | 0.7981 | 0.1741 | 0.0607 |
1.0053 | 20.0 | 20000 | 2.7164 | 0.8035 | 0.3508 | 2.0693 | 0.8035 | 0.8017 | 0.1638 | 0.0594 |
0.9783 | 21.0 | 21000 | 2.7162 | 0.8085 | 0.3475 | 2.0165 | 0.8085 | 0.8080 | 0.1622 | 0.0601 |
0.9606 | 22.0 | 22000 | 2.7740 | 0.804 | 0.3505 | 2.0738 | 0.804 | 0.8057 | 0.1678 | 0.0585 |
0.9579 | 23.0 | 23000 | 2.7597 | 0.803 | 0.3544 | 2.0507 | 0.803 | 0.8038 | 0.1668 | 0.0600 |
0.9439 | 24.0 | 24000 | 2.7108 | 0.809 | 0.3407 | 2.0218 | 0.809 | 0.8099 | 0.1626 | 0.0574 |
0.9247 | 25.0 | 25000 | 2.6918 | 0.8125 | 0.3355 | 2.0449 | 0.8125 | 0.8114 | 0.1580 | 0.0549 |
0.9275 | 26.0 | 26000 | 2.6996 | 0.8163 | 0.3316 | 2.0140 | 0.8163 | 0.8159 | 0.1585 | 0.0582 |
0.914 | 27.0 | 27000 | 2.7846 | 0.8113 | 0.3389 | 2.0190 | 0.8113 | 0.8110 | 0.1626 | 0.0598 |
0.9036 | 28.0 | 28000 | 2.7436 | 0.817 | 0.3341 | 2.0702 | 0.817 | 0.8166 | 0.1587 | 0.0564 |
0.893 | 29.0 | 29000 | 2.7354 | 0.8197 | 0.3272 | 2.0581 | 0.8197 | 0.8207 | 0.1551 | 0.0588 |
0.8815 | 30.0 | 30000 | 2.8377 | 0.813 | 0.3414 | 2.1163 | 0.813 | 0.8149 | 0.1630 | 0.0614 |
0.8688 | 31.0 | 31000 | 2.7815 | 0.8207 | 0.3310 | 2.0502 | 0.8207 | 0.8205 | 0.1576 | 0.0554 |
0.8727 | 32.0 | 32000 | 2.7370 | 0.82 | 0.3292 | 2.1149 | 0.82 | 0.8193 | 0.1563 | 0.0545 |
0.8581 | 33.0 | 33000 | 2.8168 | 0.812 | 0.3443 | 2.0026 | 0.8120 | 0.8146 | 0.1658 | 0.0594 |
0.8504 | 34.0 | 34000 | 2.7660 | 0.8173 | 0.3321 | 2.0497 | 0.8173 | 0.8181 | 0.1597 | 0.0556 |
0.8563 | 35.0 | 35000 | 2.8457 | 0.8097 | 0.3442 | 2.0815 | 0.8097 | 0.8107 | 0.1669 | 0.0592 |
0.8415 | 36.0 | 36000 | 2.7366 | 0.8245 | 0.3179 | 2.0282 | 0.8245 | 0.8251 | 0.1511 | 0.0566 |
0.8372 | 37.0 | 37000 | 2.7731 | 0.821 | 0.3249 | 2.1084 | 0.821 | 0.8198 | 0.1563 | 0.0546 |
0.8406 | 38.0 | 38000 | 2.6948 | 0.8283 | 0.3131 | 2.0343 | 0.8283 | 0.8281 | 0.1493 | 0.0533 |
0.831 | 39.0 | 39000 | 2.7781 | 0.827 | 0.3192 | 2.0592 | 0.827 | 0.8270 | 0.1534 | 0.0544 |
0.8223 | 40.0 | 40000 | 2.7811 | 0.8267 | 0.3161 | 2.0946 | 0.8267 | 0.8271 | 0.1512 | 0.0570 |
0.8258 | 41.0 | 41000 | 2.6993 | 0.827 | 0.3138 | 2.0347 | 0.827 | 0.8271 | 0.1507 | 0.0531 |
0.8209 | 42.0 | 42000 | 2.7467 | 0.828 | 0.3197 | 2.0159 | 0.828 | 0.8279 | 0.1530 | 0.0541 |
0.8146 | 43.0 | 43000 | 2.7050 | 0.8257 | 0.3159 | 2.0518 | 0.8257 | 0.8249 | 0.1526 | 0.0523 |
0.8161 | 44.0 | 44000 | 2.6919 | 0.8257 | 0.3160 | 1.9889 | 0.8257 | 0.8255 | 0.1515 | 0.0530 |
0.8121 | 45.0 | 45000 | 2.7314 | 0.8235 | 0.3210 | 2.0259 | 0.8235 | 0.8244 | 0.1542 | 0.0537 |
0.809 | 46.0 | 46000 | 2.7203 | 0.8275 | 0.3146 | 2.0431 | 0.8275 | 0.8272 | 0.1526 | 0.0514 |
0.8091 | 47.0 | 47000 | 2.7174 | 0.826 | 0.3176 | 2.0313 | 0.826 | 0.8253 | 0.1534 | 0.0527 |
0.8073 | 48.0 | 48000 | 2.7058 | 0.8277 | 0.3130 | 2.0258 | 0.8277 | 0.8272 | 0.1515 | 0.0519 |
0.8073 | 49.0 | 49000 | 2.7065 | 0.827 | 0.3146 | 2.0301 | 0.827 | 0.8266 | 0.1528 | 0.0523 |
0.8069 | 50.0 | 50000 | 2.7080 | 0.8275 | 0.3142 | 2.0399 | 0.8275 | 0.8270 | 0.1526 | 0.0520 |
Framework versions
- Transformers 4.26.1
- Pytorch 1.13.1.post200
- Datasets 2.9.0
- Tokenizers 0.13.2