generated_from_trainer

<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. -->

dit-base-finetuned-rvlcdip-tiny_rvl_cdip-NK1000_og_simkd

This model is a fine-tuned version of WinKawaks/vit-tiny-patch16-224 on the None dataset. It achieves the following results on the evaluation set:

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

Training results

Training Loss Epoch Step Validation Loss Accuracy Brier Loss Nll F1 Micro F1 Macro Ece Aurc
12731.392 1.0 1000 12479.0312 0.5323 0.5967 3.1288 0.5323 0.4700 0.1047 0.2100
12715.18 2.0 2000 12453.9434 0.5787 0.6261 3.4535 0.5787 0.5518 0.1953 0.2225
12672.101 3.0 3000 12456.4629 0.6723 0.4708 2.9701 0.6723 0.6487 0.1102 0.1171
12681.216 4.0 4000 12448.6143 0.6815 0.4741 2.8370 0.6815 0.6707 0.1250 0.1245
12638.181 5.0 5000 12443.0645 0.716 0.4178 2.7837 0.7160 0.7273 0.1095 0.0932
12802.019 6.0 6000 12432.3438 0.7468 0.3768 2.6575 0.7468 0.7537 0.0898 0.0800
12671.194 7.0 7000 12420.4395 0.7335 0.4163 2.8018 0.7335 0.7331 0.1256 0.1139
12705.783 8.0 8000 12410.6143 0.7598 0.3739 2.7562 0.7598 0.7634 0.1157 0.0729
12559.44 9.0 9000 12412.9453 0.7612 0.3793 2.8905 0.7612 0.7658 0.1232 0.0731
12618.725 10.0 10000 12390.2139 0.7722 0.3613 2.6477 0.7722 0.7753 0.1190 0.0750
12731.292 11.0 11000 12387.4863 0.7875 0.3427 2.5376 0.7875 0.7898 0.1154 0.0689
12705.794 12.0 12000 12379.9336 0.7805 0.3555 2.6072 0.7805 0.7813 0.1284 0.0681
12550.782 13.0 13000 12380.7959 0.787 0.3400 2.5381 0.787 0.7887 0.1162 0.0662
12670.568 14.0 14000 12376.7646 0.7867 0.3423 2.6149 0.7868 0.7925 0.1186 0.0574
12580.616 15.0 15000 12352.3135 0.7953 0.3468 2.6324 0.7953 0.7969 0.1382 0.0622
12723.865 16.0 16000 12345.4600 0.8015 0.3312 2.4793 0.8015 0.8034 0.1244 0.0601
12620.305 17.0 17000 12343.1553 0.8023 0.3424 2.6488 0.8023 0.8031 0.1420 0.0644
12668.087 18.0 18000 12336.9277 0.8 0.3455 2.7019 0.8000 0.8023 0.1401 0.0592
12654.687 19.0 19000 12332.4404 0.8075 0.3321 2.5589 0.8075 0.8094 0.1393 0.0556
12578.655 20.0 20000 12321.3037 0.8075 0.3395 2.4255 0.8075 0.8050 0.1484 0.0638
12525.448 21.0 21000 12315.5303 0.8067 0.3328 2.5264 0.8067 0.8066 0.1440 0.0548
12610.837 22.0 22000 12311.0215 0.8105 0.3291 2.4781 0.8105 0.8112 0.1445 0.0540
12494.528 23.0 23000 12303.3623 0.8145 0.3337 2.5535 0.8145 0.8154 0.1510 0.0561
12561.799 24.0 24000 12296.2363 0.8153 0.3246 2.4243 0.8153 0.8142 0.1475 0.0513
12580.176 25.0 25000 12291.8018 0.8193 0.3262 2.3932 0.8193 0.8174 0.1484 0.0550
12455.165 26.0 26000 12276.9355 0.826 0.3223 2.4710 0.826 0.8251 0.1507 0.0597
12528.496 27.0 27000 12280.9180 0.8257 0.3154 2.4010 0.8257 0.8260 0.1462 0.0524
12521.554 28.0 28000 12262.9600 0.821 0.3274 2.4721 0.821 0.8201 0.1560 0.0595
12557.871 29.0 29000 12260.7754 0.823 0.3217 2.3929 0.823 0.8226 0.1552 0.0551
12535.524 30.0 30000 12271.4717 0.8263 0.3183 2.3249 0.8263 0.8269 0.1503 0.0502
12488.263 31.0 31000 12259.3057 0.823 0.3219 2.3830 0.823 0.8226 0.1541 0.0528
12498.048 32.0 32000 12253.2412 0.8263 0.3174 2.2771 0.8263 0.8243 0.1527 0.0541
12465.825 33.0 33000 12257.4863 0.8323 0.3088 2.3466 0.8323 0.8319 0.1454 0.0500
12439.6 34.0 34000 12238.5957 0.8323 0.3093 2.4057 0.8323 0.8329 0.1482 0.0552
12407.423 35.0 35000 12250.7178 0.8335 0.3072 2.2532 0.8335 0.8336 0.1471 0.0521
12534.711 36.0 36000 12231.9902 0.8353 0.3032 2.2711 0.8353 0.8353 0.1464 0.0548
12458.666 37.0 37000 12232.9521 0.835 0.3041 2.2523 0.835 0.8352 0.1467 0.0539
12461.748 38.0 38000 12230.4639 0.8317 0.3096 2.3052 0.8317 0.8318 0.1512 0.0539
12434.679 39.0 39000 12229.0684 0.8317 0.3081 2.2172 0.8317 0.8317 0.1497 0.0547
12468.468 40.0 40000 12226.4775 0.8323 0.3096 2.3112 0.8323 0.8324 0.1509 0.0524
12540.176 41.0 41000 12213.8359 0.8357 0.3085 2.2929 0.8357 0.8356 0.1502 0.0541
12513.896 42.0 42000 12216.2480 0.8333 0.3096 2.1638 0.8333 0.8329 0.1501 0.0559
12406.31 43.0 43000 12213.7012 0.8347 0.3078 2.1971 0.8347 0.8345 0.1504 0.0542
12350.768 44.0 44000 12224.6738 0.8323 0.3086 2.1722 0.8323 0.8320 0.1514 0.0546
12394.478 45.0 45000 12221.9336 0.8325 0.3100 2.2464 0.8325 0.8323 0.1516 0.0536
12399.318 46.0 46000 12207.5957 0.8347 0.3089 2.2193 0.8347 0.8344 0.1517 0.0553
12476.218 47.0 47000 12213.4814 0.8353 0.3055 2.2084 0.8353 0.8353 0.1488 0.0532
12448.278 48.0 48000 12212.2119 0.8347 0.3058 2.1518 0.8347 0.8345 0.1492 0.0545
12486.848 49.0 49000 12210.5742 0.8347 0.3062 2.2778 0.8347 0.8345 0.1498 0.0546
12376.327 50.0 50000 12216.4121 0.8337 0.3073 2.1945 0.8337 0.8337 0.1506 0.0535

Framework versions