<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. -->
vit-base_rvl-cdip-small_rvl_cdip-NK1000_hint
This model is a fine-tuned version of WinKawaks/vit-small-patch16-224 on the None dataset. It achieves the following results on the evaluation set:
- Loss: 72.4419
- Accuracy: 0.8455
- Brier Loss: 0.2823
- Nll: 1.9713
- F1 Micro: 0.8455
- F1 Macro: 0.8458
- Ece: 0.1379
- Aurc: 0.0501
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 50
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | Brier Loss | Nll | F1 Micro | F1 Macro | Ece | Aurc |
---|---|---|---|---|---|---|---|---|---|---|
75.292 | 1.0 | 1000 | 74.9267 | 0.669 | 0.4449 | 2.2033 | 0.669 | 0.6688 | 0.0509 | 0.1261 |
74.3102 | 2.0 | 2000 | 74.4753 | 0.7228 | 0.3815 | 2.1695 | 0.7228 | 0.7241 | 0.0443 | 0.0931 |
73.8711 | 3.0 | 3000 | 74.1051 | 0.7718 | 0.3245 | 1.9516 | 0.7717 | 0.7726 | 0.0520 | 0.0687 |
73.8038 | 4.0 | 4000 | 74.0142 | 0.764 | 0.3412 | 1.9168 | 0.764 | 0.7656 | 0.0862 | 0.0705 |
73.5111 | 5.0 | 5000 | 73.9154 | 0.762 | 0.3443 | 1.9320 | 0.762 | 0.7684 | 0.0774 | 0.0734 |
73.2405 | 6.0 | 6000 | 73.6544 | 0.7923 | 0.3034 | 1.9497 | 0.7923 | 0.7877 | 0.0780 | 0.0555 |
72.892 | 7.0 | 7000 | 73.6057 | 0.8073 | 0.3042 | 1.9087 | 0.8073 | 0.8074 | 0.1072 | 0.0549 |
72.6235 | 8.0 | 8000 | 73.6740 | 0.8007 | 0.3175 | 1.9674 | 0.8007 | 0.8002 | 0.1221 | 0.0566 |
72.6609 | 9.0 | 9000 | 73.6103 | 0.7977 | 0.3290 | 2.0128 | 0.7977 | 0.7992 | 0.1345 | 0.0595 |
72.4643 | 10.0 | 10000 | 73.5996 | 0.8143 | 0.3166 | 1.9412 | 0.8143 | 0.8148 | 0.1372 | 0.0498 |
72.2435 | 11.0 | 11000 | 73.5005 | 0.8057 | 0.3268 | 1.9323 | 0.8057 | 0.8070 | 0.1469 | 0.0530 |
72.1757 | 12.0 | 12000 | 73.5284 | 0.8165 | 0.3197 | 1.9353 | 0.8165 | 0.8175 | 0.1442 | 0.0511 |
72.0746 | 13.0 | 13000 | 73.5250 | 0.8023 | 0.3434 | 2.0172 | 0.8023 | 0.8047 | 0.1577 | 0.0584 |
72.0251 | 14.0 | 14000 | 73.3937 | 0.817 | 0.3176 | 1.9784 | 0.817 | 0.8172 | 0.1471 | 0.0510 |
71.8588 | 15.0 | 15000 | 73.3792 | 0.814 | 0.3249 | 1.9812 | 0.8140 | 0.8148 | 0.1506 | 0.0514 |
71.8093 | 16.0 | 16000 | 73.2188 | 0.825 | 0.3084 | 1.9155 | 0.825 | 0.8259 | 0.1446 | 0.0449 |
71.5835 | 17.0 | 17000 | 73.2452 | 0.8307 | 0.3019 | 1.9447 | 0.8308 | 0.8308 | 0.1386 | 0.0437 |
71.6995 | 18.0 | 18000 | 73.2568 | 0.83 | 0.3042 | 2.0599 | 0.83 | 0.8304 | 0.1444 | 0.0459 |
71.4455 | 19.0 | 19000 | 73.2655 | 0.8203 | 0.3204 | 2.0173 | 0.8203 | 0.8205 | 0.1524 | 0.0484 |
71.4047 | 20.0 | 20000 | 73.1947 | 0.8203 | 0.3218 | 1.9651 | 0.8203 | 0.8218 | 0.1524 | 0.0484 |
71.5116 | 21.0 | 21000 | 73.1398 | 0.8217 | 0.3197 | 1.9803 | 0.8217 | 0.8209 | 0.1521 | 0.0453 |
71.3315 | 22.0 | 22000 | 73.0498 | 0.832 | 0.3033 | 1.9617 | 0.832 | 0.8327 | 0.1445 | 0.0478 |
71.329 | 23.0 | 23000 | 73.0645 | 0.8277 | 0.3129 | 1.9073 | 0.8277 | 0.8293 | 0.1502 | 0.0486 |
71.2208 | 24.0 | 24000 | 73.1448 | 0.8257 | 0.3188 | 2.0056 | 0.8257 | 0.8252 | 0.1511 | 0.0520 |
71.22 | 25.0 | 25000 | 72.9177 | 0.827 | 0.3103 | 1.9543 | 0.827 | 0.8261 | 0.1493 | 0.0500 |
71.1268 | 26.0 | 26000 | 72.9064 | 0.8323 | 0.3022 | 1.9069 | 0.8323 | 0.8311 | 0.1458 | 0.0463 |
70.8954 | 27.0 | 27000 | 72.8821 | 0.8403 | 0.2930 | 1.9264 | 0.8403 | 0.8405 | 0.1399 | 0.0454 |
70.7553 | 28.0 | 28000 | 72.8230 | 0.8347 | 0.3012 | 1.9356 | 0.8347 | 0.8347 | 0.1434 | 0.0487 |
70.8785 | 29.0 | 29000 | 72.8549 | 0.8347 | 0.3023 | 1.9905 | 0.8347 | 0.8339 | 0.1464 | 0.0477 |
70.8139 | 30.0 | 30000 | 72.8073 | 0.8405 | 0.2933 | 1.9148 | 0.8405 | 0.8400 | 0.1399 | 0.0482 |
70.9162 | 31.0 | 31000 | 72.7751 | 0.8367 | 0.3005 | 1.9466 | 0.8367 | 0.8364 | 0.1441 | 0.0473 |
70.8988 | 32.0 | 32000 | 72.7235 | 0.8365 | 0.2990 | 1.9178 | 0.8365 | 0.8362 | 0.1432 | 0.0453 |
70.7529 | 33.0 | 33000 | 72.6744 | 0.8415 | 0.2937 | 1.9929 | 0.8415 | 0.8424 | 0.1391 | 0.0491 |
70.6705 | 34.0 | 34000 | 72.6624 | 0.8407 | 0.2927 | 1.9562 | 0.8407 | 0.8423 | 0.1417 | 0.0490 |
70.6404 | 35.0 | 35000 | 72.7689 | 0.8317 | 0.3071 | 2.0079 | 0.8317 | 0.8311 | 0.1479 | 0.0551 |
70.5201 | 36.0 | 36000 | 72.6579 | 0.8425 | 0.2928 | 1.9879 | 0.8425 | 0.8431 | 0.1404 | 0.0519 |
70.6383 | 37.0 | 37000 | 72.5850 | 0.8458 | 0.2839 | 1.9513 | 0.8458 | 0.8470 | 0.1362 | 0.0500 |
70.5781 | 38.0 | 38000 | 72.5590 | 0.8423 | 0.2894 | 1.9416 | 0.8423 | 0.8427 | 0.1407 | 0.0496 |
70.4386 | 39.0 | 39000 | 72.5131 | 0.8435 | 0.2855 | 1.9475 | 0.8435 | 0.8443 | 0.1397 | 0.0492 |
70.4275 | 40.0 | 40000 | 72.5441 | 0.8455 | 0.2896 | 1.9216 | 0.8455 | 0.8460 | 0.1387 | 0.0481 |
70.5018 | 41.0 | 41000 | 72.5071 | 0.8452 | 0.2866 | 1.9148 | 0.8452 | 0.8465 | 0.1384 | 0.0486 |
70.5176 | 42.0 | 42000 | 72.5110 | 0.8445 | 0.2862 | 1.9591 | 0.8445 | 0.8447 | 0.1384 | 0.0523 |
70.3675 | 43.0 | 43000 | 72.4968 | 0.844 | 0.2845 | 1.9376 | 0.844 | 0.8445 | 0.1398 | 0.0507 |
70.4295 | 44.0 | 44000 | 72.4633 | 0.846 | 0.2838 | 1.9475 | 0.8460 | 0.8464 | 0.1381 | 0.0506 |
70.5198 | 45.0 | 45000 | 72.4940 | 0.8468 | 0.2828 | 1.9559 | 0.8468 | 0.8471 | 0.1374 | 0.0501 |
70.3838 | 46.0 | 46000 | 72.4658 | 0.8462 | 0.2823 | 1.9468 | 0.8462 | 0.8465 | 0.1366 | 0.0500 |
70.5383 | 47.0 | 47000 | 72.4590 | 0.8475 | 0.2817 | 1.9537 | 0.8475 | 0.8480 | 0.1362 | 0.0502 |
70.3619 | 48.0 | 48000 | 72.4522 | 0.8458 | 0.2824 | 1.9632 | 0.8458 | 0.8461 | 0.1377 | 0.0495 |
70.4764 | 49.0 | 49000 | 72.4573 | 0.8455 | 0.2825 | 1.9689 | 0.8455 | 0.8457 | 0.1378 | 0.0499 |
70.3705 | 50.0 | 50000 | 72.4419 | 0.8455 | 0.2823 | 1.9713 | 0.8455 | 0.8458 | 0.1379 | 0.0501 |
Framework versions
- Transformers 4.26.1
- Pytorch 1.13.1.post200
- Datasets 2.9.0
- Tokenizers 0.13.2