<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. -->
vit-base_rvl-cdip-small_rvl_cdip-NK1000_simkd
This model is a fine-tuned version of WinKawaks/vit-small-patch16-224 on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.0540
- Accuracy: 0.859
- Brier Loss: 0.2977
- Nll: 1.1492
- F1 Micro: 0.859
- F1 Macro: 0.8598
- Ece: 0.2784
- Aurc: 0.0325
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 50
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | Brier Loss | Nll | F1 Micro | F1 Macro | Ece | Aurc |
---|---|---|---|---|---|---|---|---|---|---|
0.0787 | 1.0 | 1000 | 0.0770 | 0.2978 | 0.9091 | 2.9717 | 0.2978 | 0.2516 | 0.2150 | 0.5174 |
0.0697 | 2.0 | 2000 | 0.0679 | 0.6372 | 0.6886 | 1.8065 | 0.6372 | 0.6302 | 0.4021 | 0.1388 |
0.0655 | 3.0 | 3000 | 0.0645 | 0.7492 | 0.5738 | 1.7388 | 0.7492 | 0.7460 | 0.4215 | 0.0921 |
0.0628 | 4.0 | 4000 | 0.0631 | 0.752 | 0.5394 | 1.7446 | 0.752 | 0.7551 | 0.3922 | 0.0837 |
0.0611 | 5.0 | 5000 | 0.0612 | 0.768 | 0.4928 | 1.5830 | 0.768 | 0.7700 | 0.3710 | 0.0655 |
0.0593 | 6.0 | 6000 | 0.0609 | 0.7598 | 0.4655 | 1.5730 | 0.7598 | 0.7667 | 0.3228 | 0.0802 |
0.0578 | 7.0 | 7000 | 0.0585 | 0.8063 | 0.4195 | 1.4053 | 0.8062 | 0.8065 | 0.3459 | 0.0521 |
0.0566 | 8.0 | 8000 | 0.0581 | 0.8073 | 0.3997 | 1.2957 | 0.8073 | 0.8084 | 0.3207 | 0.0538 |
0.0557 | 9.0 | 9000 | 0.0571 | 0.8287 | 0.3810 | 1.3269 | 0.8287 | 0.8301 | 0.3307 | 0.0473 |
0.0554 | 10.0 | 10000 | 0.0573 | 0.8115 | 0.3780 | 1.3469 | 0.8115 | 0.8128 | 0.3011 | 0.0508 |
0.0546 | 11.0 | 11000 | 0.0563 | 0.8395 | 0.3549 | 1.2882 | 0.8395 | 0.8401 | 0.3197 | 0.0386 |
0.0541 | 12.0 | 12000 | 0.0558 | 0.839 | 0.3426 | 1.2653 | 0.839 | 0.8401 | 0.3014 | 0.0394 |
0.0536 | 13.0 | 13000 | 0.0553 | 0.8465 | 0.3259 | 1.1941 | 0.8465 | 0.8473 | 0.2980 | 0.0357 |
0.0537 | 14.0 | 14000 | 0.0559 | 0.8303 | 0.3499 | 1.2460 | 0.8303 | 0.8338 | 0.2955 | 0.0427 |
0.0532 | 15.0 | 15000 | 0.0551 | 0.8445 | 0.3296 | 1.1799 | 0.8445 | 0.8453 | 0.2990 | 0.0360 |
0.0529 | 16.0 | 16000 | 0.0549 | 0.845 | 0.3224 | 1.1801 | 0.845 | 0.8456 | 0.2895 | 0.0364 |
0.0527 | 17.0 | 17000 | 0.0549 | 0.849 | 0.3264 | 1.1725 | 0.849 | 0.8503 | 0.2991 | 0.0363 |
0.0526 | 18.0 | 18000 | 0.0547 | 0.8518 | 0.3170 | 1.1755 | 0.8518 | 0.8527 | 0.2943 | 0.0334 |
0.0524 | 19.0 | 19000 | 0.0546 | 0.8458 | 0.3213 | 1.1417 | 0.8458 | 0.8466 | 0.2917 | 0.0344 |
0.0522 | 20.0 | 20000 | 0.0544 | 0.8545 | 0.3105 | 1.1512 | 0.8545 | 0.8542 | 0.2891 | 0.0333 |
0.052 | 21.0 | 21000 | 0.0542 | 0.855 | 0.3120 | 1.1403 | 0.855 | 0.8555 | 0.2940 | 0.0333 |
0.0518 | 22.0 | 22000 | 0.0542 | 0.854 | 0.3096 | 1.1533 | 0.854 | 0.8545 | 0.2893 | 0.0319 |
0.0517 | 23.0 | 23000 | 0.0541 | 0.8545 | 0.3098 | 1.1445 | 0.8545 | 0.8556 | 0.2920 | 0.0315 |
0.0516 | 24.0 | 24000 | 0.0540 | 0.8578 | 0.3097 | 1.1273 | 0.8578 | 0.8586 | 0.2958 | 0.0315 |
0.0514 | 25.0 | 25000 | 0.0540 | 0.8532 | 0.3076 | 1.1579 | 0.8532 | 0.8533 | 0.2849 | 0.0342 |
0.0513 | 26.0 | 26000 | 0.0540 | 0.855 | 0.3055 | 1.1269 | 0.855 | 0.8563 | 0.2855 | 0.0325 |
0.0511 | 27.0 | 27000 | 0.0538 | 0.8565 | 0.3029 | 1.1571 | 0.8565 | 0.8572 | 0.2827 | 0.0334 |
0.051 | 28.0 | 28000 | 0.0538 | 0.8598 | 0.3012 | 1.1409 | 0.8598 | 0.8604 | 0.2851 | 0.0317 |
0.0509 | 29.0 | 29000 | 0.0537 | 0.86 | 0.3003 | 1.1525 | 0.8600 | 0.8603 | 0.2839 | 0.0323 |
0.0508 | 30.0 | 30000 | 0.0537 | 0.8575 | 0.3024 | 1.1430 | 0.8575 | 0.8585 | 0.2849 | 0.0319 |
0.0507 | 31.0 | 31000 | 0.0537 | 0.8595 | 0.3015 | 1.1454 | 0.8595 | 0.8603 | 0.2859 | 0.0311 |
0.0507 | 32.0 | 32000 | 0.0537 | 0.8598 | 0.3005 | 1.1463 | 0.8598 | 0.8603 | 0.2847 | 0.0316 |
0.0506 | 33.0 | 33000 | 0.0537 | 0.8598 | 0.2966 | 1.1392 | 0.8598 | 0.8605 | 0.2800 | 0.0309 |
0.0506 | 34.0 | 34000 | 0.0537 | 0.8562 | 0.3018 | 1.1442 | 0.8562 | 0.8574 | 0.2813 | 0.0327 |
0.0505 | 35.0 | 35000 | 0.0537 | 0.855 | 0.2995 | 1.1402 | 0.855 | 0.8556 | 0.2790 | 0.0324 |
0.0505 | 36.0 | 36000 | 0.0537 | 0.8575 | 0.2980 | 1.1324 | 0.8575 | 0.8582 | 0.2783 | 0.0314 |
0.0504 | 37.0 | 37000 | 0.0538 | 0.8562 | 0.2981 | 1.1429 | 0.8562 | 0.8570 | 0.2770 | 0.0320 |
0.0503 | 38.0 | 38000 | 0.0538 | 0.8565 | 0.2997 | 1.1319 | 0.8565 | 0.8573 | 0.2795 | 0.0324 |
0.0503 | 39.0 | 39000 | 0.0538 | 0.857 | 0.2988 | 1.1447 | 0.857 | 0.8578 | 0.2791 | 0.0320 |
0.0502 | 40.0 | 40000 | 0.0538 | 0.8588 | 0.2982 | 1.1409 | 0.8588 | 0.8595 | 0.2798 | 0.0320 |
0.0502 | 41.0 | 41000 | 0.0538 | 0.8572 | 0.2982 | 1.1455 | 0.8572 | 0.8580 | 0.2781 | 0.0319 |
0.0502 | 42.0 | 42000 | 0.0538 | 0.8602 | 0.2979 | 1.1357 | 0.8602 | 0.8609 | 0.2809 | 0.0320 |
0.0501 | 43.0 | 43000 | 0.0539 | 0.8568 | 0.2987 | 1.1462 | 0.8568 | 0.8574 | 0.2787 | 0.0322 |
0.0501 | 44.0 | 44000 | 0.0539 | 0.8595 | 0.2974 | 1.1456 | 0.8595 | 0.8602 | 0.2789 | 0.0322 |
0.0501 | 45.0 | 45000 | 0.0539 | 0.8592 | 0.2980 | 1.1460 | 0.8592 | 0.8601 | 0.2792 | 0.0322 |
0.05 | 46.0 | 46000 | 0.0539 | 0.8588 | 0.2979 | 1.1441 | 0.8588 | 0.8596 | 0.2787 | 0.0322 |
0.05 | 47.0 | 47000 | 0.0540 | 0.8592 | 0.2983 | 1.1501 | 0.8592 | 0.8600 | 0.2793 | 0.0324 |
0.05 | 48.0 | 48000 | 0.0540 | 0.8588 | 0.2980 | 1.1462 | 0.8588 | 0.8595 | 0.2787 | 0.0324 |
0.05 | 49.0 | 49000 | 0.0540 | 0.8598 | 0.2978 | 1.1507 | 0.8598 | 0.8604 | 0.2793 | 0.0324 |
0.05 | 50.0 | 50000 | 0.0540 | 0.859 | 0.2977 | 1.1492 | 0.859 | 0.8598 | 0.2784 | 0.0325 |
Framework versions
- Transformers 4.26.1
- Pytorch 1.13.1.post200
- Datasets 2.9.0
- Tokenizers 0.13.2