<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. -->
dit-base-finetuned-rvlcdip-small_rvl_cdip-NK1000_kd_MSE
This model is a fine-tuned version of WinKawaks/vit-small-patch16-224 on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.3468
- Accuracy: 0.8335
- Brier Loss: 0.2611
- Nll: 1.2696
- F1 Micro: 0.8335
- F1 Macro: 0.8338
- Ece: 0.0865
- Aurc: 0.0606
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 96
- eval_batch_size: 96
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 50
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | Brier Loss | Nll | F1 Micro | F1 Macro | Ece | Aurc |
---|---|---|---|---|---|---|---|---|---|---|
No log | 1.0 | 167 | 0.9313 | 0.5955 | 0.5896 | 2.2535 | 0.5955 | 0.5760 | 0.2103 | 0.1770 |
No log | 2.0 | 334 | 0.6941 | 0.7027 | 0.4541 | 1.7696 | 0.7027 | 0.6962 | 0.1756 | 0.1075 |
0.9587 | 3.0 | 501 | 0.5806 | 0.7435 | 0.3758 | 1.8114 | 0.7435 | 0.7489 | 0.1225 | 0.0802 |
0.9587 | 4.0 | 668 | 0.4847 | 0.7808 | 0.3232 | 1.6093 | 0.7808 | 0.7825 | 0.0897 | 0.0600 |
0.9587 | 5.0 | 835 | 0.4888 | 0.775 | 0.3291 | 1.7398 | 0.775 | 0.7686 | 0.0629 | 0.0681 |
0.3668 | 6.0 | 1002 | 0.4441 | 0.789 | 0.3136 | 1.5502 | 0.7890 | 0.7882 | 0.0720 | 0.0626 |
0.3668 | 7.0 | 1169 | 0.4258 | 0.7993 | 0.3009 | 1.6320 | 0.7993 | 0.7994 | 0.0626 | 0.0658 |
0.3668 | 8.0 | 1336 | 0.4813 | 0.774 | 0.3395 | 1.8387 | 0.774 | 0.7788 | 0.0716 | 0.0811 |
0.1959 | 9.0 | 1503 | 0.4289 | 0.7967 | 0.3111 | 1.7125 | 0.7967 | 0.7985 | 0.0799 | 0.0686 |
0.1959 | 10.0 | 1670 | 0.4380 | 0.7897 | 0.3151 | 1.8001 | 0.7897 | 0.7920 | 0.0802 | 0.0730 |
0.1959 | 11.0 | 1837 | 0.4414 | 0.796 | 0.3159 | 1.7450 | 0.796 | 0.7956 | 0.0795 | 0.0815 |
0.1249 | 12.0 | 2004 | 0.4507 | 0.787 | 0.3243 | 1.7219 | 0.787 | 0.7840 | 0.0841 | 0.0767 |
0.1249 | 13.0 | 2171 | 0.4209 | 0.802 | 0.3095 | 1.7111 | 0.802 | 0.8045 | 0.0825 | 0.0729 |
0.1249 | 14.0 | 2338 | 0.4095 | 0.8007 | 0.3039 | 1.5961 | 0.8007 | 0.8018 | 0.0742 | 0.0743 |
0.088 | 15.0 | 2505 | 0.4043 | 0.8125 | 0.2974 | 1.6100 | 0.8125 | 0.8158 | 0.0801 | 0.0740 |
0.088 | 16.0 | 2672 | 0.4056 | 0.8083 | 0.2964 | 1.6402 | 0.8083 | 0.8080 | 0.0833 | 0.0681 |
0.088 | 17.0 | 2839 | 0.4052 | 0.8103 | 0.2993 | 1.6074 | 0.8103 | 0.8105 | 0.0848 | 0.0780 |
0.0638 | 18.0 | 3006 | 0.4207 | 0.8035 | 0.3066 | 1.6669 | 0.8035 | 0.8075 | 0.0826 | 0.0746 |
0.0638 | 19.0 | 3173 | 0.3981 | 0.8125 | 0.2911 | 1.5687 | 0.8125 | 0.8128 | 0.0836 | 0.0762 |
0.0638 | 20.0 | 3340 | 0.3828 | 0.8207 | 0.2803 | 1.5513 | 0.8207 | 0.8217 | 0.0800 | 0.0627 |
0.0456 | 21.0 | 3507 | 0.3710 | 0.821 | 0.2802 | 1.4355 | 0.821 | 0.8218 | 0.0913 | 0.0662 |
0.0456 | 22.0 | 3674 | 0.3672 | 0.8247 | 0.2744 | 1.4922 | 0.8247 | 0.8280 | 0.0774 | 0.0615 |
0.0456 | 23.0 | 3841 | 0.3600 | 0.8255 | 0.2727 | 1.4413 | 0.8255 | 0.8256 | 0.0817 | 0.0675 |
0.0289 | 24.0 | 4008 | 0.3650 | 0.8235 | 0.2767 | 1.3874 | 0.8235 | 0.8248 | 0.0818 | 0.0698 |
0.0289 | 25.0 | 4175 | 0.3608 | 0.827 | 0.2706 | 1.3223 | 0.827 | 0.8279 | 0.0861 | 0.0597 |
0.0289 | 26.0 | 4342 | 0.3572 | 0.829 | 0.2687 | 1.3947 | 0.8290 | 0.8300 | 0.0878 | 0.0650 |
0.0176 | 27.0 | 4509 | 0.3516 | 0.8315 | 0.2655 | 1.3000 | 0.8315 | 0.8319 | 0.0866 | 0.0597 |
0.0176 | 28.0 | 4676 | 0.3455 | 0.8337 | 0.2626 | 1.3070 | 0.8337 | 0.8351 | 0.0870 | 0.0602 |
0.0176 | 29.0 | 4843 | 0.3489 | 0.8337 | 0.2656 | 1.3027 | 0.8337 | 0.8347 | 0.0859 | 0.0587 |
0.011 | 30.0 | 5010 | 0.3472 | 0.8327 | 0.2639 | 1.2879 | 0.8327 | 0.8336 | 0.0878 | 0.0599 |
0.011 | 31.0 | 5177 | 0.3468 | 0.8335 | 0.2642 | 1.2955 | 0.8335 | 0.8341 | 0.0859 | 0.0650 |
0.011 | 32.0 | 5344 | 0.3467 | 0.8333 | 0.2635 | 1.2911 | 0.8333 | 0.8341 | 0.0849 | 0.0588 |
0.0076 | 33.0 | 5511 | 0.3430 | 0.834 | 0.2601 | 1.2738 | 0.834 | 0.8346 | 0.0831 | 0.0609 |
0.0076 | 34.0 | 5678 | 0.3442 | 0.8345 | 0.2626 | 1.2921 | 0.8345 | 0.8353 | 0.0864 | 0.0629 |
0.0076 | 35.0 | 5845 | 0.3431 | 0.8355 | 0.2596 | 1.2790 | 0.8355 | 0.8362 | 0.0860 | 0.0589 |
0.0055 | 36.0 | 6012 | 0.3496 | 0.8297 | 0.2646 | 1.2985 | 0.8297 | 0.8305 | 0.0897 | 0.0642 |
0.0055 | 37.0 | 6179 | 0.3445 | 0.8343 | 0.2605 | 1.2509 | 0.8343 | 0.8348 | 0.0862 | 0.0594 |
0.0055 | 38.0 | 6346 | 0.3473 | 0.831 | 0.2628 | 1.2919 | 0.831 | 0.8314 | 0.0881 | 0.0616 |
0.0041 | 39.0 | 6513 | 0.3445 | 0.8325 | 0.2625 | 1.2894 | 0.8325 | 0.8330 | 0.0880 | 0.0619 |
0.0041 | 40.0 | 6680 | 0.3462 | 0.8317 | 0.2614 | 1.2840 | 0.8317 | 0.8323 | 0.0844 | 0.0599 |
0.0041 | 41.0 | 6847 | 0.3437 | 0.833 | 0.2602 | 1.2694 | 0.833 | 0.8336 | 0.0871 | 0.0598 |
0.003 | 42.0 | 7014 | 0.3456 | 0.8347 | 0.2605 | 1.2867 | 0.8347 | 0.8352 | 0.0844 | 0.0615 |
0.003 | 43.0 | 7181 | 0.3454 | 0.8347 | 0.2607 | 1.2844 | 0.8347 | 0.8354 | 0.0868 | 0.0598 |
0.003 | 44.0 | 7348 | 0.3451 | 0.8337 | 0.2599 | 1.2719 | 0.8337 | 0.8342 | 0.0832 | 0.0595 |
0.0022 | 45.0 | 7515 | 0.3460 | 0.8343 | 0.2607 | 1.2750 | 0.8343 | 0.8346 | 0.0844 | 0.0591 |
0.0022 | 46.0 | 7682 | 0.3461 | 0.8325 | 0.2607 | 1.2774 | 0.8325 | 0.8328 | 0.0861 | 0.0604 |
0.0022 | 47.0 | 7849 | 0.3465 | 0.8335 | 0.2610 | 1.2776 | 0.8335 | 0.8338 | 0.0834 | 0.0600 |
0.0018 | 48.0 | 8016 | 0.3468 | 0.8327 | 0.2609 | 1.2758 | 0.8327 | 0.8331 | 0.0865 | 0.0605 |
0.0018 | 49.0 | 8183 | 0.3466 | 0.8333 | 0.2610 | 1.2724 | 0.8333 | 0.8336 | 0.0858 | 0.0609 |
0.0018 | 50.0 | 8350 | 0.3468 | 0.8335 | 0.2611 | 1.2696 | 0.8335 | 0.8338 | 0.0865 | 0.0606 |
Framework versions
- Transformers 4.26.1
- Pytorch 1.13.1.post200
- Datasets 2.9.0
- Tokenizers 0.13.2