generated_from_trainer

<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. -->

dit-base-finetuned-rvlcdip-small_rvl_cdip-NK1000_kd_NKD_t1.0_g1.5

This model is a fine-tuned version of WinKawaks/vit-small-patch16-224 on the None dataset. It achieves the following results on the evaluation set:

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

Training results

Training Loss Epoch Step Validation Loss Accuracy Brier Loss Nll F1 Micro F1 Macro Ece Aurc
No log 1.0 167 5.3750 0.61 0.5591 2.2520 0.61 0.5922 0.1827 0.1664
No log 2.0 334 5.0343 0.7117 0.4389 1.9483 0.7117 0.7096 0.1691 0.0962
5.4927 3.0 501 4.8554 0.7472 0.3777 1.6689 0.7472 0.7474 0.1221 0.0780
5.4927 4.0 668 4.7917 0.76 0.3524 1.5715 0.76 0.7644 0.0915 0.0699
5.4927 5.0 835 4.7792 0.765 0.3461 1.5348 0.765 0.7590 0.0737 0.0704
4.6216 6.0 1002 4.6378 0.7993 0.2954 1.3769 0.7993 0.7995 0.0546 0.0559
4.6216 7.0 1169 4.8666 0.771 0.3359 1.5727 0.771 0.7728 0.0670 0.0666
4.6216 8.0 1336 4.6834 0.7897 0.3047 1.3537 0.7897 0.7914 0.0531 0.0564
4.2978 9.0 1503 4.6558 0.7997 0.2912 1.3758 0.7997 0.7988 0.0521 0.0508
4.2978 10.0 1670 4.8214 0.7923 0.3144 1.5316 0.7923 0.7928 0.0815 0.0561
4.2978 11.0 1837 4.8908 0.7923 0.3201 1.4158 0.7923 0.7931 0.0988 0.0573
4.1375 12.0 2004 4.7703 0.8093 0.2971 1.3642 0.8093 0.8097 0.0812 0.0514
4.1375 13.0 2171 4.8126 0.806 0.3039 1.3759 0.806 0.8053 0.0916 0.0491
4.1375 14.0 2338 4.7875 0.8063 0.2990 1.3712 0.8062 0.8065 0.0904 0.0481
4.0665 15.0 2505 4.7995 0.805 0.3016 1.4133 0.805 0.8049 0.0909 0.0503
4.0665 16.0 2672 4.7712 0.8075 0.2957 1.4018 0.8075 0.8082 0.0880 0.0484
4.0665 17.0 2839 4.7245 0.812 0.2886 1.2816 0.8120 0.8139 0.0831 0.0464
4.0204 18.0 3006 4.8990 0.8055 0.3079 1.3884 0.8055 0.8046 0.1117 0.0504
4.0204 19.0 3173 4.9286 0.802 0.3147 1.3977 0.802 0.7995 0.1078 0.0522
4.0204 20.0 3340 4.9510 0.8055 0.3121 1.4482 0.8055 0.8062 0.1125 0.0521
3.9854 21.0 3507 4.8837 0.8033 0.3082 1.4528 0.8033 0.8022 0.1052 0.0502
3.9854 22.0 3674 5.0103 0.813 0.3069 1.4217 0.813 0.8169 0.1207 0.0500
3.9854 23.0 3841 4.9602 0.8093 0.3091 1.4672 0.8093 0.8103 0.1187 0.0494
3.9599 24.0 4008 4.8980 0.8177 0.2953 1.3589 0.8178 0.8203 0.1083 0.0451
3.9599 25.0 4175 4.8753 0.8145 0.2932 1.3219 0.8145 0.8140 0.1054 0.0460
3.9599 26.0 4342 4.9644 0.8193 0.3000 1.4336 0.8193 0.8200 0.1173 0.0458
3.9358 27.0 4509 4.9648 0.8203 0.2985 1.4117 0.8203 0.8197 0.1132 0.0471
3.9358 28.0 4676 5.0130 0.8195 0.3014 1.4618 0.8195 0.8201 0.1205 0.0456
3.9358 29.0 4843 4.8974 0.8255 0.2874 1.3041 0.8255 0.8258 0.1097 0.0421
3.9151 30.0 5010 4.9045 0.8255 0.2878 1.2801 0.8255 0.8250 0.1119 0.0426
3.9151 31.0 5177 4.9720 0.823 0.2945 1.3551 0.823 0.8240 0.1212 0.0439
3.9151 32.0 5344 4.9508 0.826 0.2913 1.2669 0.826 0.8268 0.1201 0.0422
3.9003 33.0 5511 5.0336 0.8237 0.2991 1.3443 0.8237 0.8240 0.1243 0.0433
3.9003 34.0 5678 4.9828 0.8237 0.2901 1.2843 0.8237 0.8239 0.1214 0.0440
3.9003 35.0 5845 5.0256 0.8287 0.2920 1.2961 0.8287 0.8291 0.1232 0.0422
3.89 36.0 6012 5.0229 0.8283 0.2922 1.2471 0.8283 0.8283 0.1236 0.0432
3.89 37.0 6179 5.0835 0.8285 0.2936 1.2892 0.8285 0.8289 0.1254 0.0442
3.89 38.0 6346 5.1148 0.8287 0.2946 1.3106 0.8287 0.8282 0.1287 0.0427
3.8846 39.0 6513 5.1238 0.827 0.2954 1.2964 0.827 0.8275 0.1298 0.0441
3.8846 40.0 6680 5.1481 0.8307 0.2950 1.3136 0.8308 0.8311 0.1277 0.0453
3.8846 41.0 6847 5.1491 0.8293 0.2943 1.2841 0.8293 0.8294 0.1298 0.0451
3.881 42.0 7014 5.1982 0.829 0.2969 1.3111 0.8290 0.8292 0.1331 0.0459
3.881 43.0 7181 5.2041 0.8283 0.2970 1.3427 0.8283 0.8283 0.1327 0.0465
3.881 44.0 7348 5.2310 0.8297 0.2985 1.3351 0.8297 0.8303 0.1346 0.0471
3.8796 45.0 7515 5.2394 0.83 0.2999 1.3308 0.83 0.8305 0.1348 0.0467
3.8796 46.0 7682 5.2632 0.83 0.2990 1.3350 0.83 0.8304 0.1355 0.0471
3.8796 47.0 7849 5.2821 0.828 0.2998 1.3354 0.828 0.8286 0.1383 0.0470
3.8753 48.0 8016 5.2949 0.829 0.2998 1.3341 0.8290 0.8294 0.1374 0.0472
3.8753 49.0 8183 5.3026 0.8287 0.3004 1.3281 0.8287 0.8293 0.1382 0.0474
3.8753 50.0 8350 5.3085 0.828 0.3005 1.3339 0.828 0.8285 0.1391 0.0474

Framework versions