<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. -->
dit-base-finetuned-rvlcdip-small_rvl_cdip-NK1000_hint
This model is a fine-tuned version of WinKawaks/vit-small-patch16-224 on the None dataset. It achieves the following results on the evaluation set:
- Loss: 2.5149
- Accuracy: 0.8438
- Brier Loss: 0.2886
- Nll: 1.9666
- F1 Micro: 0.8438
- F1 Macro: 0.8442
- Ece: 0.1400
- Aurc: 0.0499
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 50
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | Brier Loss | Nll | F1 Micro | F1 Macro | Ece | Aurc |
---|---|---|---|---|---|---|---|---|---|---|
2.8286 | 1.0 | 1000 | 2.6354 | 0.6627 | 0.4563 | 2.2971 | 0.6627 | 0.6604 | 0.0542 | 0.1330 |
2.3 | 2.0 | 2000 | 2.2674 | 0.73 | 0.3761 | 2.0481 | 0.7300 | 0.7314 | 0.0509 | 0.0916 |
2.0283 | 3.0 | 3000 | 2.0891 | 0.7602 | 0.3360 | 1.9964 | 0.7602 | 0.7626 | 0.0564 | 0.0728 |
1.8552 | 4.0 | 4000 | 2.1367 | 0.746 | 0.3686 | 2.0430 | 0.746 | 0.7485 | 0.0911 | 0.0815 |
1.7095 | 5.0 | 5000 | 2.0469 | 0.7725 | 0.3301 | 1.9740 | 0.7725 | 0.7715 | 0.0882 | 0.0683 |
1.6118 | 6.0 | 6000 | 1.9706 | 0.7788 | 0.3199 | 1.9470 | 0.7788 | 0.7773 | 0.0816 | 0.0617 |
1.4475 | 7.0 | 7000 | 2.0324 | 0.779 | 0.3364 | 2.0056 | 0.779 | 0.7789 | 0.1159 | 0.0640 |
1.3546 | 8.0 | 8000 | 2.0987 | 0.7955 | 0.3266 | 1.9823 | 0.7955 | 0.7965 | 0.1259 | 0.0597 |
1.2711 | 9.0 | 9000 | 2.1830 | 0.7863 | 0.3487 | 2.0545 | 0.7863 | 0.7879 | 0.1418 | 0.0621 |
1.1984 | 10.0 | 10000 | 2.2992 | 0.7923 | 0.3537 | 2.0028 | 0.7923 | 0.7925 | 0.1532 | 0.0612 |
1.1503 | 11.0 | 11000 | 2.3319 | 0.795 | 0.3449 | 2.0241 | 0.795 | 0.7946 | 0.1527 | 0.0594 |
1.0998 | 12.0 | 12000 | 2.4733 | 0.7973 | 0.3553 | 2.0856 | 0.7973 | 0.7964 | 0.1602 | 0.0589 |
1.0752 | 13.0 | 13000 | 2.4884 | 0.7887 | 0.3655 | 2.0351 | 0.7887 | 0.7902 | 0.1679 | 0.0644 |
1.0564 | 14.0 | 14000 | 2.4374 | 0.7963 | 0.3496 | 2.0512 | 0.7963 | 0.7985 | 0.1611 | 0.0570 |
1.0227 | 15.0 | 15000 | 2.5464 | 0.7973 | 0.3582 | 2.1184 | 0.7973 | 0.7936 | 0.1676 | 0.0568 |
1.0129 | 16.0 | 16000 | 2.5022 | 0.8027 | 0.3441 | 2.0449 | 0.8027 | 0.8036 | 0.1636 | 0.0560 |
0.9895 | 17.0 | 17000 | 2.4877 | 0.811 | 0.3358 | 2.0303 | 0.811 | 0.8099 | 0.1578 | 0.0562 |
0.9628 | 18.0 | 18000 | 2.4552 | 0.8107 | 0.3328 | 2.0399 | 0.8108 | 0.8114 | 0.1548 | 0.0527 |
0.9466 | 19.0 | 19000 | 2.5208 | 0.818 | 0.3251 | 2.0761 | 0.818 | 0.8189 | 0.1524 | 0.0520 |
0.9291 | 20.0 | 20000 | 2.5858 | 0.8137 | 0.3332 | 2.0634 | 0.8137 | 0.8141 | 0.1588 | 0.0538 |
0.9177 | 21.0 | 21000 | 2.5647 | 0.8107 | 0.3383 | 2.0875 | 0.8108 | 0.8124 | 0.1601 | 0.0539 |
0.9038 | 22.0 | 22000 | 2.6104 | 0.82 | 0.3301 | 2.1033 | 0.82 | 0.8198 | 0.1566 | 0.0559 |
0.8874 | 23.0 | 23000 | 2.5864 | 0.8237 | 0.3188 | 2.0000 | 0.8237 | 0.8244 | 0.1517 | 0.0519 |
0.8858 | 24.0 | 24000 | 2.5969 | 0.8185 | 0.3273 | 2.0714 | 0.8185 | 0.8191 | 0.1551 | 0.0527 |
0.8653 | 25.0 | 25000 | 2.5529 | 0.828 | 0.3109 | 2.0179 | 0.828 | 0.8287 | 0.1505 | 0.0509 |
0.8475 | 26.0 | 26000 | 2.5745 | 0.8265 | 0.3171 | 1.9994 | 0.8265 | 0.8272 | 0.1509 | 0.0526 |
0.8569 | 27.0 | 27000 | 2.5906 | 0.8265 | 0.3142 | 2.0156 | 0.8265 | 0.8272 | 0.1499 | 0.0565 |
0.8368 | 28.0 | 28000 | 2.7150 | 0.8225 | 0.3271 | 2.0439 | 0.8225 | 0.8215 | 0.1561 | 0.0580 |
0.8355 | 29.0 | 29000 | 2.6501 | 0.824 | 0.3211 | 1.9908 | 0.824 | 0.8260 | 0.1545 | 0.0541 |
0.832 | 30.0 | 30000 | 2.5656 | 0.8315 | 0.3076 | 2.0091 | 0.8315 | 0.8328 | 0.1474 | 0.0540 |
0.8191 | 31.0 | 31000 | 2.6891 | 0.827 | 0.3189 | 1.9819 | 0.827 | 0.8294 | 0.1529 | 0.0573 |
0.8118 | 32.0 | 32000 | 2.6791 | 0.827 | 0.3175 | 2.0233 | 0.827 | 0.8268 | 0.1523 | 0.0575 |
0.8098 | 33.0 | 33000 | 2.5437 | 0.8373 | 0.2992 | 1.9926 | 0.8373 | 0.8384 | 0.1435 | 0.0492 |
0.8006 | 34.0 | 34000 | 2.5751 | 0.8415 | 0.2932 | 2.0036 | 0.8415 | 0.8410 | 0.1403 | 0.0501 |
0.8033 | 35.0 | 35000 | 2.5944 | 0.8303 | 0.3113 | 2.0069 | 0.8303 | 0.8302 | 0.1492 | 0.0537 |
0.7916 | 36.0 | 36000 | 2.4955 | 0.839 | 0.2922 | 1.9523 | 0.839 | 0.8391 | 0.1407 | 0.0493 |
0.7919 | 37.0 | 37000 | 2.6199 | 0.8365 | 0.3003 | 1.9494 | 0.8365 | 0.8370 | 0.1458 | 0.0538 |
0.7844 | 38.0 | 38000 | 2.5823 | 0.8365 | 0.3011 | 1.9960 | 0.8365 | 0.8368 | 0.1462 | 0.0511 |
0.7795 | 39.0 | 39000 | 2.5626 | 0.8415 | 0.2928 | 1.9916 | 0.8415 | 0.8412 | 0.1406 | 0.0484 |
0.7757 | 40.0 | 40000 | 2.5528 | 0.8415 | 0.2891 | 1.9512 | 0.8415 | 0.8420 | 0.1406 | 0.0502 |
0.7788 | 41.0 | 41000 | 2.5829 | 0.8383 | 0.2983 | 1.9420 | 0.8383 | 0.8377 | 0.1438 | 0.0530 |
0.7743 | 42.0 | 42000 | 2.5285 | 0.838 | 0.2948 | 1.9636 | 0.838 | 0.8383 | 0.1449 | 0.0486 |
0.768 | 43.0 | 43000 | 2.5130 | 0.8405 | 0.2906 | 1.9448 | 0.8405 | 0.8404 | 0.1418 | 0.0479 |
0.7681 | 44.0 | 44000 | 2.5347 | 0.8383 | 0.2951 | 1.9588 | 0.8383 | 0.8390 | 0.1446 | 0.0508 |
0.7662 | 45.0 | 45000 | 2.5246 | 0.8413 | 0.2900 | 1.9314 | 0.8413 | 0.8416 | 0.1415 | 0.0508 |
0.7629 | 46.0 | 46000 | 2.5246 | 0.8397 | 0.2913 | 1.9648 | 0.8397 | 0.8403 | 0.1433 | 0.0498 |
0.7632 | 47.0 | 47000 | 2.5217 | 0.8425 | 0.2892 | 1.9648 | 0.8425 | 0.8429 | 0.1409 | 0.0503 |
0.7598 | 48.0 | 48000 | 2.5163 | 0.8435 | 0.2881 | 1.9776 | 0.8435 | 0.8439 | 0.1407 | 0.0500 |
0.7609 | 49.0 | 49000 | 2.5187 | 0.8438 | 0.2885 | 1.9677 | 0.8438 | 0.8442 | 0.1401 | 0.0500 |
0.759 | 50.0 | 50000 | 2.5149 | 0.8438 | 0.2886 | 1.9666 | 0.8438 | 0.8442 | 0.1400 | 0.0499 |
Framework versions
- Transformers 4.26.1
- Pytorch 1.13.1.post200
- Datasets 2.9.0
- Tokenizers 0.13.2