<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. -->
dit-base-finetuned-rvlcdip-small_rvl_cdip-NK1000_simkd
This model is a fine-tuned version of WinKawaks/vit-small-patch16-224 on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.0864
- Accuracy: 0.842
- Brier Loss: 0.4773
- Nll: 1.3055
- F1 Micro: 0.842
- F1 Macro: 0.8427
- Ece: 0.4404
- Aurc: 0.0865
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 50
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | Brier Loss | Nll | F1 Micro | F1 Macro | Ece | Aurc |
---|---|---|---|---|---|---|---|---|---|---|
0.1387 | 1.0 | 1000 | 0.1293 | 0.4412 | 0.8613 | 3.7912 | 0.4412 | 0.3863 | 0.3246 | 0.3321 |
0.1154 | 2.0 | 2000 | 0.1132 | 0.668 | 0.7441 | 2.1523 | 0.668 | 0.6478 | 0.4699 | 0.1467 |
0.1074 | 3.0 | 3000 | 0.1075 | 0.73 | 0.7150 | 1.9686 | 0.7300 | 0.7323 | 0.5177 | 0.1104 |
0.1036 | 4.0 | 4000 | 0.1068 | 0.7258 | 0.6943 | 2.0361 | 0.7258 | 0.7299 | 0.4903 | 0.1318 |
0.0996 | 5.0 | 5000 | 0.1047 | 0.742 | 0.6897 | 2.1166 | 0.7420 | 0.7456 | 0.5061 | 0.1124 |
0.0967 | 6.0 | 6000 | 0.0992 | 0.78 | 0.6307 | 1.8492 | 0.78 | 0.7875 | 0.5018 | 0.0924 |
0.0923 | 7.0 | 7000 | 0.0985 | 0.774 | 0.6055 | 2.0449 | 0.774 | 0.7800 | 0.4698 | 0.1056 |
0.0893 | 8.0 | 8000 | 0.0982 | 0.7817 | 0.6012 | 1.9476 | 0.7817 | 0.7814 | 0.4696 | 0.1243 |
0.0871 | 9.0 | 9000 | 0.0954 | 0.8043 | 0.5826 | 1.7573 | 0.8043 | 0.8065 | 0.4925 | 0.0811 |
0.0857 | 10.0 | 10000 | 0.0969 | 0.784 | 0.5672 | 2.0878 | 0.7840 | 0.7846 | 0.4417 | 0.1076 |
0.083 | 11.0 | 11000 | 0.0934 | 0.8067 | 0.5658 | 1.6628 | 0.8067 | 0.8062 | 0.4809 | 0.0788 |
0.0819 | 12.0 | 12000 | 0.0930 | 0.8027 | 0.5499 | 1.6718 | 0.8027 | 0.8035 | 0.4592 | 0.0851 |
0.081 | 13.0 | 13000 | 0.0937 | 0.7957 | 0.5579 | 1.7282 | 0.7957 | 0.7956 | 0.4544 | 0.0948 |
0.079 | 14.0 | 14000 | 0.0939 | 0.794 | 0.5463 | 1.9406 | 0.7940 | 0.7974 | 0.4344 | 0.1142 |
0.0779 | 15.0 | 15000 | 0.0912 | 0.81 | 0.5206 | 1.6776 | 0.81 | 0.8141 | 0.4371 | 0.0947 |
0.0767 | 16.0 | 16000 | 0.0905 | 0.813 | 0.5165 | 1.6744 | 0.813 | 0.8140 | 0.4383 | 0.0864 |
0.0766 | 17.0 | 17000 | 0.0911 | 0.8113 | 0.5239 | 1.7109 | 0.8113 | 0.8104 | 0.4428 | 0.0902 |
0.0762 | 18.0 | 18000 | 0.0914 | 0.8093 | 0.5153 | 1.6778 | 0.8093 | 0.8098 | 0.4290 | 0.0998 |
0.0759 | 19.0 | 19000 | 0.0904 | 0.8163 | 0.5076 | 1.6946 | 0.8163 | 0.8178 | 0.4333 | 0.0939 |
0.075 | 20.0 | 20000 | 0.0897 | 0.8133 | 0.5062 | 1.5892 | 0.8133 | 0.8155 | 0.4300 | 0.0898 |
0.0743 | 21.0 | 21000 | 0.0895 | 0.8147 | 0.5058 | 1.5900 | 0.8148 | 0.8149 | 0.4315 | 0.0917 |
0.0745 | 22.0 | 22000 | 0.0898 | 0.8157 | 0.5014 | 1.5523 | 0.8157 | 0.8164 | 0.4287 | 0.0848 |
0.0737 | 23.0 | 23000 | 0.0901 | 0.8127 | 0.5038 | 1.6625 | 0.8128 | 0.8146 | 0.4219 | 0.0978 |
0.0735 | 24.0 | 24000 | 0.0907 | 0.8117 | 0.5082 | 1.6475 | 0.8117 | 0.8133 | 0.4231 | 0.1064 |
0.0732 | 25.0 | 25000 | 0.0901 | 0.8103 | 0.5041 | 1.6830 | 0.8103 | 0.8105 | 0.4187 | 0.1017 |
0.0727 | 26.0 | 26000 | 0.0899 | 0.8135 | 0.5015 | 1.6499 | 0.8135 | 0.8170 | 0.4197 | 0.1020 |
0.0722 | 27.0 | 27000 | 0.0880 | 0.8265 | 0.4931 | 1.4651 | 0.8265 | 0.8273 | 0.4330 | 0.0975 |
0.0718 | 28.0 | 28000 | 0.0876 | 0.8263 | 0.4917 | 1.4213 | 0.8263 | 0.8275 | 0.4354 | 0.0858 |
0.0725 | 29.0 | 29000 | 0.0891 | 0.8247 | 0.4930 | 1.5581 | 0.8247 | 0.8254 | 0.4288 | 0.0946 |
0.0717 | 30.0 | 30000 | 0.0879 | 0.8327 | 0.4913 | 1.4417 | 0.8327 | 0.8326 | 0.4403 | 0.0888 |
0.0715 | 31.0 | 31000 | 0.0872 | 0.8375 | 0.4866 | 1.3775 | 0.8375 | 0.8389 | 0.4435 | 0.0872 |
0.0715 | 32.0 | 32000 | 0.0884 | 0.8297 | 0.4915 | 1.5136 | 0.8297 | 0.8305 | 0.4331 | 0.0946 |
0.0717 | 33.0 | 33000 | 0.0877 | 0.8347 | 0.4851 | 1.4096 | 0.8347 | 0.8347 | 0.4375 | 0.0845 |
0.0716 | 34.0 | 34000 | 0.0880 | 0.8323 | 0.4866 | 1.4547 | 0.8323 | 0.8333 | 0.4323 | 0.0926 |
0.0713 | 35.0 | 35000 | 0.0873 | 0.8343 | 0.4833 | 1.3884 | 0.8343 | 0.8351 | 0.4375 | 0.0810 |
0.0713 | 36.0 | 36000 | 0.0873 | 0.8365 | 0.4843 | 1.4168 | 0.8365 | 0.8372 | 0.4381 | 0.0913 |
0.071 | 37.0 | 37000 | 0.0871 | 0.8393 | 0.4831 | 1.3524 | 0.8393 | 0.8399 | 0.4412 | 0.0882 |
0.0709 | 38.0 | 38000 | 0.0877 | 0.834 | 0.4862 | 1.4457 | 0.834 | 0.8353 | 0.4371 | 0.0929 |
0.071 | 39.0 | 39000 | 0.0870 | 0.836 | 0.4811 | 1.3954 | 0.836 | 0.8367 | 0.4360 | 0.0886 |
0.0708 | 40.0 | 40000 | 0.0867 | 0.8387 | 0.4800 | 1.3687 | 0.8387 | 0.8403 | 0.4390 | 0.0867 |
0.0706 | 41.0 | 41000 | 0.0866 | 0.8395 | 0.4802 | 1.3464 | 0.8395 | 0.8399 | 0.4412 | 0.0860 |
0.0708 | 42.0 | 42000 | 0.0868 | 0.8363 | 0.4796 | 1.3828 | 0.8363 | 0.8371 | 0.4345 | 0.0886 |
0.0709 | 43.0 | 43000 | 0.0866 | 0.838 | 0.4790 | 1.3503 | 0.838 | 0.8390 | 0.4382 | 0.0860 |
0.0702 | 44.0 | 44000 | 0.0866 | 0.8415 | 0.4787 | 1.3679 | 0.8415 | 0.8425 | 0.4403 | 0.0899 |
0.0703 | 45.0 | 45000 | 0.0866 | 0.8373 | 0.4788 | 1.3192 | 0.8373 | 0.8379 | 0.4374 | 0.0863 |
0.0702 | 46.0 | 46000 | 0.0865 | 0.841 | 0.4776 | 1.3357 | 0.841 | 0.8417 | 0.4398 | 0.0871 |
0.0703 | 47.0 | 47000 | 0.0864 | 0.8417 | 0.4772 | 1.3302 | 0.8417 | 0.8424 | 0.4406 | 0.0859 |
0.0705 | 48.0 | 48000 | 0.0865 | 0.841 | 0.4776 | 1.3096 | 0.841 | 0.8417 | 0.4398 | 0.0877 |
0.0703 | 49.0 | 49000 | 0.0864 | 0.8413 | 0.4775 | 1.3022 | 0.8413 | 0.8419 | 0.4400 | 0.0865 |
0.0703 | 50.0 | 50000 | 0.0864 | 0.842 | 0.4773 | 1.3055 | 0.842 | 0.8427 | 0.4404 | 0.0865 |
Framework versions
- Transformers 4.26.1
- Pytorch 1.13.1.post200
- Datasets 2.9.0
- Tokenizers 0.13.2